题目内容

14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2

分析 先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,在Rt△ADC′中利用勾股定理得(8-x)2=x2+42,解得x=3,然后根据三角形的面积公式计算即可.

解答 解:∵∠C=90°,BC=6cm,AC=8cm,
∴AB=10cm,
∵将△BCD沿BD折叠,使点C落在AB边的C′点,
∴△BCD≌△BC′D,
∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,
∴AC′=AB-BC′=4cm,
设DC=xcm,则AD=(8-x)cm,
在Rt△ADC′中,AD2=AC′2+C′D2
即(8-x)2=x2+42,解得x=3,
∵∠AC′D=90°,
∴△ADC′的面积═$\frac{1}{2}$×AC′×C′D=$\frac{1}{2}$×4×3=6(cm2).
故答案为:6.

点评 本题考查了折叠的性质以及勾股定理的运用;熟练掌握折叠的性质和勾股定理,由勾股定理得出方程是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网