题目内容
16.(1)求证:BF=EF;
(2)求证:AB=AE.
分析 (1)根据中点定义可得CF=DF,然后证明△BCF≌△EDF,进而可得FB=FE;
(2)根据△BCF≌△EDF可得FB=EF,∠BFC=∠EFD,再证明∠BFA=∠EFA,然后判定△ABF≌△AEF可得AB=AE.
解答 证明:(1)∵点F是CD 的中点,
∴CF=DF,
在△BCF和△EDF中$\left\{\begin{array}{l}{BC=DE}\\{∠BCD=∠EDF}\\{CF=FD}\end{array}\right.$,
∴△BCF≌△EDF(SAS),
∴FB=FE;
(2)∵△BCF≌△EDF,
∴FB=EF,∠BFC=∠EFD,
∵AF⊥CD,
∴∠BFC+∠AFB=∠AFE+∠EFD,
∴∠BFA=∠EFA,
在△ABF和△AEF中$\left\{\begin{array}{l}{AF=AF}\\{∠AFB=∠AFE}\\{FB=EF}\end{array}\right.$,
∴△ABF≌△AEF(SAS),
∴AB=AE.
点评 此题主要考查了全等三角形的判定和性质,关键是掌握全等三角形的判定定理:SSS、ASA、SAS、AAS、HL,掌握全等三角形对应边相等,对应角相等.
练习册系列答案
相关题目
6.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考,请你回答下列问题:
(1)根据上表提供的数据填写下表:
(2)根据以上信息,你认为应该把冠军奖状发给哪一个班级?简述理由.
友情提示:一组数据的方差计算公式是S2=$\frac{1}{n}$[(x1-x)2+(x2-x)2+…+(xn-x)2],其中$\overline{x}$为n个数据x1,x2,…,xn的平均数.
| 1号 | 2号 | 3号 | 4号 | 5号 | 总分 | |
| 甲班 | 100 | 98 | 110 | 89 | 103 | 500 |
| 乙班 | 86 | 100 | 98 | 119 | 97 | 500 |
| 优秀率 | 中位数 | 方差 | |
| 甲班 | 60% | 100 | 46.8 |
| 乙班 | 40% | 98 | 114 |
友情提示:一组数据的方差计算公式是S2=$\frac{1}{n}$[(x1-x)2+(x2-x)2+…+(xn-x)2],其中$\overline{x}$为n个数据x1,x2,…,xn的平均数.