题目内容

3.如图①正方形ABCD,EFGH的中心P、Q都在直线l上,EF⊥l,AC∥EH,正方形ABCD以1cm/s的速度沿直线l向正方形EFGH移动,当点A与HG的中点L重合时停止移动,设移动时间为xs时,这两个正方形重叠部分面积为ycm2,y与x的函数图象如图②,则下列结论:
①AC=4cm;②当x=3t时重叠部分的面积为7cm2;③m=$\sqrt{3}$s;④当P、Q重合时,重叠部分的面积为8cm2;⑤当2<x≤4时,y与x的函数关系式是y=-(x-4)2+8;
其中正确的结论的序号是①②③④⑤(把所有正确结论的序号都填在横线上)

分析 ①由这两个正方形的重叠部分面积为8时,也就是小正方形的面积为8,求出边长即可得出AC的长;
②当2≤x≤6时,得到y与x的函数关系式,当y=7时,解方程可作判断;
③当6≤x≤8时,y与x的函数关系式为y=(8-x)2,此时函数y的取值范围是0≤y≤4.当y=3时,解方程即可求出m;
④由图象可得结论;
⑤当2≤x≤6时,y与x的函数关系式为y=-(x-4)2+8.

解答 解:(1)当这两个正方形的重叠部分面积为8时,也就是小正方形的面积为8,得出小正方形的边长为2$\sqrt{2}$cm,所以AC=$\sqrt{2}$×2$\sqrt{2}$=4cm,故①正确.
(2)当2≤x≤6时,y与x的函数关系式为y=-(x-4)2+8,此时函数y的取值范围是4≤y≤8,当y=7时,得-(x-4)2+8=7,解得x=3或x=5.所以正方形ABCD出发3秒或5秒时,重叠部分面积为7cm2,故②正确;
(3)当0≤x≤2时,y与x的函数关系式为y=x2,此时函数y的取值范围是0≤y≤4,当y=3时,得x2=3或(8-x)2=3,解得x=±$\sqrt{3}$(负号舍去)或x=±$\sqrt{3}$+8(正号舍去),即m=$\sqrt{3}$,故③正确;
(4)由图象可以看出两个正方形的最大重叠部分面积为8,此时P、Q重合,故④正确;
(5)当2≤x≤6时,y与x的函数关系式为y=-(x-4)2+8,故⑤正确;
故答案为:①②③④⑤.

点评 本题主要考查了动点问题的函数图象,解题的关键是通过图形获取信息,要理清图象的含义即会识图.

练习册系列答案
相关题目
11.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.
(1)阅读填空
如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.
理由:连接AH,EH.
∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.
∵DH⊥AE,∴∠ADH=∠EDH=90°
∴∠HAD+∠AHD=90°
∴∠AHD=∠HED,∴△ADH∽△HDE.
∴$\frac{AD}{DH}=\frac{DH}{DE}$,即DH2=AD×DE.
又∵DE=DC
∴DH2=AD×DC,即正方形DFGH与矩形ABCD等积.
(2)操作实践
平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.
如图②,请用尺规作图作出与?ABCD等积的矩形(不要求写具体作法,保留作图痕迹).
(3)解决问题
三角形的“化方”思路是:先把三角形转化为等积的矩形(填写图形名称),再转化为等积的正方形.
如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).
(4)拓展探究
n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n-1边形,…,直至转化为等积的三角形,从而可以化方.
如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网