题目内容
考点:圆内接四边形的性质,圆周角定理
专题:证明题
分析:利用角平分线的定义以及圆内接四边形的性质以及圆周角定理得出∠DBC=∠DCB,即可得出答案.
解答:
证明:∵AD为△ABC外角∠CAE的平分线,
∴∠EAD=∠DAC,
∵∠EAD=∠DCB,∠DAC=∠DBC,
∴∠DBC=∠DCB,
∴DB=DC.
∴∠EAD=∠DAC,
∵∠EAD=∠DCB,∠DAC=∠DBC,
∴∠DBC=∠DCB,
∴DB=DC.
点评:此题主要考查了角平分线的定义以及圆内接四边形的性质以及圆周角定理等知识,得出∠DBC=∠DCB是解题关键.
练习册系列答案
相关题目
| A、15.0 | B、15.1 |
| C、15.2 | D、15.3 |
一元二次方程(3x-1)(-x+1)=3x-1的解是( )
| A、x=0 | ||
| B、x=1 | ||
C、x=
| ||
D、x=
|