题目内容

3.如图,将Rt△ABC以直角顶点C为旋转中心顺时针旋转,使点A刚好落在AB上(即:点A′),若∠A=55°,则图中∠1=(  )
A.110°B.102°C.105°D.125°

分析 先利用互余计算出∠B=35°,再根据旋转的性质得CA=CA′,∠ACA′=∠BCB′,∠B′=∠B=35°,则利用等腰三角形的性质得∠CA′A=∠CAA′=55°,于是利用三角形内角和可计算出∠ACA′=70°,则∠BCB′=70°,然后根据三角形外角性质计算∠1的度数.

解答 解:在Rt△ABC中,∠B=90°-∠A=35°,
∵Rt△ABC以直角顶点C为旋转中心顺时针旋转,使点A刚好落在AB上(即:点A′),
∴CA=CA′,∠ACA′=∠BCB′,∠B′=∠B=35°,
∴∠CA′A=∠CAA′=55°,
∴∠ACA′=180°-2×55°=70°,
∴∠BCB′=70°,
∴∠1=∠BCB′+∠B′=70°+35°=105°.
故选C.

点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网