等腰三角形一腰上的中线将它的周长分别为8和12两部分,则它的腰长、底边长分别为__________________.

8,8,4或 【解析】设底边长a,腰长b,则有 (1)a+=8, b+=12, 解得:a=4,b=8, 即腰长、底边长分别为:8,8,4; (2)a+=12, b+=8, 得a= ,b=, 即腰长、底边长分别为: , , , 综上,腰长、底边长分别为:8,8,4或, , , 故答案为:8,8,4或, , .

如图,已知?ABCD,点E是BC边上的一点,将边AD延长至点F,使∠AFC=∠DEC.

(1)求证:四边形DECF是平行四边形;

(2)若AB=13,DF=14,tan A=,求CF的长.

(1)见解析;(2)15 【解析】 试题分析:(1)由已知可知AD∥BC,从而得∠ADE=∠DEC,再根据∠AFC=∠DEC,从而得∠AFC=∠ADE,继而得DE∥FC,问题得证; (2)过点D作DH⊥BC于点H,由已知得到∠BCD=∠A,AB=CD=13,再根据tan A=tan∠DCH=,从而得到DH、CH的长,从而得到CE、DE的长,继而得CF的长. 试题解析:(1)∵四边...

如图,在四边形ABCD中,AD∥BC,AC⊥AB,AD=CD,cos ∠DCA=,BC=10,则AB的值是(  )

A. 3 B. 6 C. 8 D. 9

B 【解析】∵AD∥BC,∴∠DAC=∠ACB.∵AD=CD, ∴∠DAC=∠DCA.∴∠ACB=∠DCA. ∴,即,∴AC=8, ∴.

分解因式:2a2b-5ab2

ab(2a-5b) 【解析】试题分析:根据提公因式法分解因式,先确定公因式ab,再提取公因式即可. 试题解析:2a2b-5ab2= ab(2a-5b).

多项式15m3n2+5m2n﹣20m2n3的公因式是(   )

A. 5mn B. 5m2n2 C. 5m2n D. 5mn2

C 【解析】多项式15n²+5m²n?20m² 中, 各项系数的最大公约数是5, 各项都含有的相同字母是m、n,字母m的指数最低是2,字母n的指数最低是1, 所以它的公因式是5m²n. 故选C.

如图所示,AD∥BC,∠ABC=80°,∠BCD=50°,利用平移的知识讨论BC与AD+AB的数量关系.

BC=AD+AB. 【解析】试题分析:把AB平移至DE的位置,由平移的性质可得:AB=DE,AD=BE,∠DEC=∠ABC=80°,在△DEC中利用三角形的内角和定理可得∠CDE=∠BCD=50°,再由等角对等边得出DE=EC,等量代换即可得出结论. 试题解析: 【解析】 由于AD∥BC, 所以可平移AB到DE的位置(即过D点作DE∥AB交BC于点E), 则AB=D...

如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是______.

AC=DE 【解析】用“HL”判定△ABC≌△DBE,已知BC=BE,再添加斜边DE=AC即可.

平移后图形的位置是由_________________________________________所决定

平移的方向和平移的距离 【解析】试题解析:平移后图形的位置是由平移的方向和平移的距离所决定,只要有其中的一个条件发生改变,平移后图形的位置就不同. 故答案为:平移的方向和平移的距离.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网