题目内容
12.分析 连接OC,根据垂径定理求出CE的长和∠OEC的度数,设OC=OA=x,根据勾股定理列出方程,解方程即可.
解答 解:连接OC,![]()
∵AB是⊙O的直径,CD⊥AB,
∴CE=$\frac{1}{2}$CD=4,∠OEC=90°,
设OC=OA=x,则OE=x-2,
根据勾股定理得:CE2+OE2=OC2,
即42+(x-2)2=x2,
解得x=5,
所以⊙O的半径为5.
点评 本题考查的是垂径定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.
练习册系列答案
相关题目