题目内容

3.如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3$\sqrt{3}$cm,则图中阴影部分的面积为$\frac{9\sqrt{3}}{4}-\frac{3}{4}π$.

分析 由AB为圆的切线,得到OC⊥AB,再由OA=OB,利用三线合一得到C为AB中点,且OC为角平分线,在直角三角形AOC中,利用30度所对的直角边等于斜边的一半求出OC的长,利用勾股定理求出AC的长,进而确定出AB的长,求出∠AOB度数,阴影部分面积=三角形AOB面积-扇形AOB面积,求出即可.

解答 解:连接OC,
∵AB与圆O相切,
∴OC⊥AB,
∵OA=OB,
∴AC=BC=$\frac{1}{2}$AB=$\frac{3\sqrt{3}}{2}$,
∴sin∠AOC=$\frac{AC}{OA}$=$\frac{\sqrt{3}}{2}$,
∴∠AOC=60°,
∴∠AOB=120°
∴OC=$\frac{1}{2}$OA=$\frac{3}{2}$,
∴S阴影=S△AOB-S扇形=$\frac{1}{2}$×3$\sqrt{3}$×$\frac{3}{2}$-$\frac{120π×(\frac{3}{2})^{2}}{360}$,
故图中阴影部分的面积为$\frac{9\sqrt{3}}{4}-\frac{3}{4}π$,
故答案为:$\frac{9\sqrt{3}}{4}-\frac{3}{4}π$.

点评 此题考查了切线的性质,含30度直角三角形的性质,以及扇形面积计算,熟练掌握切线的性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网