题目内容

18.已知y=x2+(t-2)x-2,当x>1时y随x的增大而增大,则t的取值范围是(  )
A.t>0B.t=0C.t<0D.t≥0

分析 可先求得抛物线的对称轴,再利用增减性可得到关于t的不等式,可求得答案.

解答 解:
∵y=x2+(t-2)x-2,
∴抛物线对称轴为x=-$\frac{t-2}{2}$,开口向上,
∴在对称轴右侧y随x的增大而增大,
∵当x>1时y随x的增大而增大,
∴-$\frac{t-2}{2}$≤1,解得t≥0,
故选D.

点评 本题主要考查二次函数的性质,利用二次函数的增减性得到关于t的不等式是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网