题目内容

把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果( )

A. 8(7a-8b)(a-b) B. 2(7a-8b)2

C. 8(7a-8b)(b-a) D. -2(7a-8b)

C 【解析】把(3a-4b)(7a-8b)+(11a-12b)(8b-7a)运用提取公因式法因式分解即可得(3a-4b)(7a-8b)+(11a-12b)(8b-7a) =(7a-8b)(3a-4b-11a+12b) =(7a-8b)(-8a+8b) =8(7a-8b)(b-a). 故选:C.
练习册系列答案
相关题目

二次函数y=x2-(m-4)x-m的图象与x轴的两个交点关于y轴对称,则其顶点坐标为___________.

(0,-4) 【解析】根据二次函数y=x2-(m-4)x-m的图象与x轴的两个交点关于y轴对称,可知抛物线关于y轴对称,所以 =0,解得m=4,则顶点坐标为(0,-4). 故答案为:(0,-4).

已知函数y=(m2-4)x2+(m2-3m+2)x-m-1.

(1)当m为何值时,y是x的二次函数?

(2)当m为何值时,y是x的一次函数?

(1) m≠±2;(2)m=-2 【解析】试题分析:(1)根据二次函数的概念,二次项的系数不为0,自变量的最高次数为2,求解即可; (2)根据一次函数的概念,一次项系数不为0,二次项的系数为0,列式求解即可. 试题解析:(1)由m2-4≠0,解得m≠±2.故当m≠±2时,y是x的二次函数. (2)由m2-4=0,解得m=±2.由m2-3m+2≠0,解得m≠1,m≠2.所以m...

先化简,再求值:

已知串联电路的电压U=IR1+IR2+IR3,当R1=12.9,R2=18.5,R3=18.6,I=2.3时,求U的值。

115 【解析】试题分析:先根据提取公因式分解U=IR1+IR2+IR3,再代入求值即可得到结果. U=I(R1+R2+R3)=2.3×(12.9+18.5+18.6)=2.3×50=115.

观察下列各组整式,其中没有公因式的是( )

A. 2a+b和a+b B. 5m(a-b) 和-a+b

C. 3(a+b) 和-a-b D. 2x+2y和2

A 【解析】选项A,没有公因式;选项B,有公因式a-b;选项C,有公因式a+b;选项D,有公因式2.故选A.

分解因式: =______________.

(a+2)(3a+4) 【解析】提取公因式a+2即可,即原式=(a+2)(3a+6-2)=(a+2)(3a+4).

4x2-9=(2x+3)(2x-3)从左到右的变形是__________________.

因式分解 【解析】因式分解是把一个多项式化为几个整式积的形式,由此可得该变形属于因式分解.

已知抛物线(a<0)过A(-2,0)、O(0,0)、B(-3, )、C(3, )四点,则的大小关系是__________

【解析】由已知得抛物线与x轴交于A(-2,0)、O(0,0)两点,开口向下,对称轴为x==-1,可知B(-3, )、C(3, )两点在对称轴的两边,点B离对称轴较近,再根据抛物线图象可得. 故答案为: .

如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是  

y=﹣x2+2x+3 【解析】 试题分析:∵抛物线y=﹣x2+bx+c的对称轴为直线x=1, ∴=1,解得b=2, ∵与x轴的一个交点为(3,0), ∴0=﹣9+6+c, 解得c=3, 故函数解析式为y=﹣x2+2x+3. 故答案为:y=﹣x2+2x+3

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网