题目内容

5.已知x为任意实数,则$\sqrt{{x}^{2}+25}$+$\sqrt{{x}^{2}-8x+17}$的最小值为2$\sqrt{13}$.

分析 因为$\sqrt{{x}^{2}+25}$+$\sqrt{{x}^{2}-8x+17}$=$\sqrt{{x}^{2}+{5}^{2}}$+$\sqrt{(x-4)^{2}+{1}^{2}}$,所以欲求$\sqrt{{x}^{2}+25}$+$\sqrt{{x}^{2}-8x+17}$的最小值,相当于如图A(0,5),B(4,1),在x轴上找一点P,使得PA+PB最短,作点B关于x轴的对称点B′(4,-1),PA+PB的最小值为AB′的长.

解答 解:∵$\sqrt{{x}^{2}+25}$+$\sqrt{{x}^{2}-8x+17}$=$\sqrt{{x}^{2}+{5}^{2}}$+$\sqrt{(x-4)^{2}+{1}^{2}}$,
∴欲求$\sqrt{{x}^{2}+25}$+$\sqrt{{x}^{2}-8x+17}$的最小值,相当于如图A(0,5),B(4,1),在x轴上找一点P,使得PA+PB最短,
作点B关于x轴的对称点B′(4,-1),
PA+PB的最小值为AB′的长=$\sqrt{{4}^{2}+{6}^{2}}$=2$\sqrt{13}$,
∴$\sqrt{{x}^{2}+25}$+$\sqrt{{x}^{2}-8x+17}$的最小值为2$\sqrt{13}$.
故答案为2$\sqrt{13}$.

点评 本题考查轴对称-最短问题、二次根式等知识,解题的关键是学会用转化的思想思考问题,把代数问题转化为几何问题解决,属于中考填空题中的压轴题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网