题目内容
菱形ABCD中,∠ABC=450,点P是对角线BD上的任一点,点P关于直线AB、AD、CD、BC的对称点分别是点E、F、G、H, BE与DF相交于点M,DG与BH相交于点N,证明:四边形BMDN是正方形。
![]()
∵四边形ABCD是菱形,
∴∠ABD=∠DBC=∠ADB
=∠BDC。
∵∠ABC=450,点P关于直线AB、AD、CD、BC的对称点分别是点E、F、G、H,
∴∠MBN=∠MDN=900,∠MBC=∠MDB=450。
∴△BDM是等腰直角三角形。
∴∠BMD=900,BM=DM。
∴四边形BMDN是正方形。
【考点】菱形的性质,轴对称的性质,正方形的判定,等腰直角三角形的判定和性质。
![]()
练习册系列答案
相关题目