题目内容
考点:角平分线的性质,等腰三角形的性质
专题:几何图形问题,证明题
分析:根据等腰三角形性质和平行线的性质求出∠DCA=∠BCA,根据三角形内角和定理求出∠DAC=∠EAC,根据角平分线性质求出即可.
解答:证明:∵AB∥CD,
∴∠DCA=∠CAB,
∵AB=BC,
∴∠BCA=∠CAB,
∴∠DCA=∠BCA,
∵∠D=90°,AE⊥BC,
∴∠D=∠AEC=90°,
∵∠DAC+∠D+∠ACD=180°,∠BCA+∠AEC+∠CAE=180°,
∴∠DAC=∠EAC,
∵∠D=90°,AE⊥BC,
∴CD=CE.
∴∠DCA=∠CAB,
∵AB=BC,
∴∠BCA=∠CAB,
∴∠DCA=∠BCA,
∵∠D=90°,AE⊥BC,
∴∠D=∠AEC=90°,
∵∠DAC+∠D+∠ACD=180°,∠BCA+∠AEC+∠CAE=180°,
∴∠DAC=∠EAC,
∵∠D=90°,AE⊥BC,
∴CD=CE.
点评:本题考查了三角形内角和定理,平行线的性质,等腰三角形的性质,角平分线性质的应用,关键是求出∠DAC=∠EAC.
练习册系列答案
相关题目
下列各组根式中,两式可以合并的是( )
A、
| ||||
B、
| ||||
C、
| ||||
D、2
|
若a=1+
,b=
,则a与b的关系是( )
| 2 |
| 1 | ||
1-
|
| A、互为相反数 | B、互为倒数 |
| C、相等 | D、互为负倒数 |