题目内容

如图,四边形ABCD中,AB=BC,AB∥CD,∠D=90°,AE⊥BC于点E,求证:CD=CE.
考点:角平分线的性质,等腰三角形的性质
专题:几何图形问题,证明题
分析:根据等腰三角形性质和平行线的性质求出∠DCA=∠BCA,根据三角形内角和定理求出∠DAC=∠EAC,根据角平分线性质求出即可.
解答:证明:∵AB∥CD,
∴∠DCA=∠CAB,
∵AB=BC,
∴∠BCA=∠CAB,
∴∠DCA=∠BCA,
∵∠D=90°,AE⊥BC,
∴∠D=∠AEC=90°,
∵∠DAC+∠D+∠ACD=180°,∠BCA+∠AEC+∠CAE=180°,
∴∠DAC=∠EAC,
∵∠D=90°,AE⊥BC,
∴CD=CE.
点评:本题考查了三角形内角和定理,平行线的性质,等腰三角形的性质,角平分线性质的应用,关键是求出∠DAC=∠EAC.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网