ÌâÄ¿ÄÚÈÝ
1£®º¯ÊýѧϰÖУ¬×Ô±äÁ¿È¡Öµ·¶Î§¼°ÏàÓ¦µÄº¯ÊýÖµ·¶Î§ÎÊÌâÊÇ´ó¼Ò¹Ø×¢µÄÖØµãÖ®Ò»£¬Çë½â¾öÏÂÃæµÄÎÊÌ⣮£¨1£©·Ö±ðÇó³öµ±2¡Üx¡Ü4ʱ£¬Èý¸öº¯Êý£ºy=2x+1£¬y=$\frac{2}{x}$£¬y=2£¨x-1£©2+1µÄ×î´óÖµºÍ×îСֵ£»
£¨2£©Èôy=$\frac{2}{x}$µÄÖµ²»´óÓÚ2£¬Çó·ûºÏÌõ¼þµÄxµÄ·¶Î§£»
£¨3£©Èôy=$\frac{k}{x}$£¬µ±a¡Üx¡Ü2ʱ¼ÈÎÞ×î´óÖµ£¬ÓÖÎÞ×îСֵ£¬ÇóaµÄȡֵ·¶Î§£»
£¨4£©y=2£¨x-m£©2+m-2£¬µ±2¡Üx¡Ü4ʱÓÐ×îСֵΪ1£¬ÇómµÄÖµ£®
·ÖÎö £¨1£©¸ù¾Ýk=2£¾0½áºÏÒ»´Îº¯ÊýµÄÐÔÖʼ´¿ÉµÃ³ö£ºµ±2¡Üx¡Ü4ʱ£¬y=2x+1µÄ×î´óÖµºÍ×îСֵ£»¸ù¾Ý¶þ´Îº¯ÊýµÄ½âÎöʽ½áºÏ¶þ´Îº¯ÊýµÄÐÔÖʼ´¿ÉµÃ³ö£ºµ±2¡Üx¡Ü4ʱ£¬y=2£¨x-1£©2+1µÄ×î´óÖµºÍ×îСֵ£»
£¨2£©Áîy=$\frac{2}{x}$¡Ü2£¬½âÖ®¼´¿ÉµÃ³öxµÄȡֵ·¶Î§£»
£¨3£©¢Ùµ±k£¾0ʱ£¬ÈçͼµÃµ±0£¼x¡Ü2ʱ£¬µÃµ½y=$\frac{k}{2}$ÎÞ×î´óÖµ£¬ÓÐ×îСֵ$\frac{k}{2}$£¬Í¬Àíµ±a£¼0ʱ£¬ÇÒa¡Üx£¼0ʱ£¬µÃµ½y¡Ü$\frac{k}{a}$ÓÐ×î´óÖµ$\frac{k}{a}$£¬ÎÞ×îСֵ£¬¢Úµ±k£¼0ʱ£¬ÈçͼµÃµ±0£¼x¡Ü2ʱ£¬y=$\frac{k}{2}$ÎÞ×îСֵ£¬ÓÐ×î´óÖµ$\frac{k}{2}$£¬Í¬Àíµ±a£¼0ʱ£¬ÇÒa¡Üx£¼0ʱ£¬y¡Ü$\frac{k}{a}$ÓÐ×îСֵ$\frac{k}{a}$£¬ÎÞ×î´óÖµ£¬ÓÚÊǵõ½½áÂÛ£»
£¨4£©·Öm£¼2¡¢2¡Üm¡Ü4ºÍm£¾4ÈýÖÖÇé¿ö¿¼ÂÇ£¬¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖʽáºÏµ±2¡Üx¡Ü4ʱÓÐ×îСֵΪ1¼´¿ÉµÃ³ö¹ØÓÚmµÄÒ»Ôª¶þ´Î·½³Ì£¨Ò»ÔªÒ»´Î·½³Ì£©£¬½âÖ®¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð
½â£º£¨1£©¡ßy=2x+1ÖÐk=2£¾0£¬
¡àyËæxµÄÔö´ó¶øÔö´ó£¬
¡àµ±x=2ʱ£¬y×îС=5£»µ±x=4ʱ£¬y×î´ó=9£®
¡ßy=$\frac{2}{x}$ÖÐk=2£¾0£¬
¡àÔÚ2¡Üx¡Ü4ÖУ¬yËæxµÄÔö´ó¶ø¼õС£¬
¡àµ±x=2ʱ£¬y×î´ó=1£»µ±x=4ʱ£¬y×îС=$\frac{1}{2}$£®
¡ßy=2£¨x-1£©2+1ÖÐa=2£¾0£¬ÇÒÅ×ÎïÏߵĶԳÆÖáΪx=1£¬
¡àµ±x=1ʱ£¬y×îС=1£»µ±x=4ʱ£¬y×î´ó=19£®
£¨2£©Áîy=$\frac{2}{x}$¡Ü2£¬
½âµÃ£ºx£¼0»òx¡Ý1£®
¡à·ûºÏÌõ¼þµÄxµÄ·¶Î§Îªx£¼0»òx¡Ý1£®
£¨3£©¢Ùµ±k£¾0ʱ£¬ÈçͼµÃµ±0£¼x¡Ü2ʱ£¬y=$\frac{k}{2}$ÎÞ×î´óÖµ£¬ÓÐ×îСֵ$\frac{k}{2}$£¬Í¬Àíµ±a£¼0ʱ£¬ÇÒa¡Üx£¼0ʱ£¬y¡Ü$\frac{k}{a}$ÓÐ×î´óÖµ$\frac{k}{a}$£¬ÎÞ×îСֵ£¬¢Úµ±k£¼0ʱ£¬ÈçͼµÃµ±0£¼x¡Ü2ʱ£¬y=$\frac{k}{2}$ÎÞ×îСֵ£¬ÓÐ×î´óÖµ$\frac{k}{2}$£¬Í¬Àíµ±a£¼0ʱ£¬ÇÒa¡Üx£¼0ʱ£¬y¡Ü$\frac{k}{a}$ÓÐ×îСֵ$\frac{k}{a}$£¬ÎÞ×î´óÖµ£¬¡àµ±k£¼0£¬a£¼0ʱ£¬´Ëʱ£¬y=$\frac{k}{x}$¼ÈÎÞ×î´óÖµ£¬ÓÖÎÞ×îСֵ£¬×ÛÉÏËùÊö£¬aµÄȡֵ·¶Î§ÊÇa£¼0£»
£¨4£©¢Ùµ±m£¼2ʱ£¬ÓÐ2£¨2-m£©2+m-2=1£¬![]()
½âµÃ£ºm1=1£¬m2=$\frac{5}{2}$£¨ÉáÈ¥£©£»
¢Úµ±2¡Üm¡Ü4ʱ£¬ÓÐm-2=1£¬
½âµÃ£ºm3=3£»
¢Ûµ±m£¾4ʱ£¬ÓÐ2£¨4-m£©2+m-2=1£¬
ÕûÀíµÃ£º2m2-15m+29=0£®
¡ß¡÷=£¨-15£©2-4¡Á2¡Á29=-7£¬Î޽⣮
¡àmµÄֵΪ1»ò3£®
¢Ùµ±k£¾0ʱ£¬ÈçͼµÃµ±0£¼x¡Ü2ʱ£¬y=$\frac{k}{2}$ÎÞ×î´óÖµ£¬ÓÐ×îСֵ$\frac{k}{2}$£¬Í¬Àíµ±a£¼0ʱ£¬ÇÒa¡Üx£¼0ʱ£¬y¡Ü$\frac{k}{a}$ÓÐ×î´óÖµ$\frac{k}{a}$£¬ÎÞ×îСֵ£¬¢Úµ±k£¼0ʱ£¬ÈçͼµÃµ±0£¼x¡Ü2ʱ£¬y=$\frac{k}{2}$ÎÞ×îСֵ£¬ÓÐ×î´óÖµ$\frac{k}{2}$£¬Í¬Àíµ±a£¼0ʱ£¬ÇÒa¡Üx£¼0ʱ£¬y¡Ü$\frac{k}{a}$ÓÐ×îСֵ$\frac{k}{a}$£¬ÎÞ×î´óÖµ£¬¡àµ±k£¼0£¬a£¼0ʱ£¬´Ëʱ£¬y=$\frac{k}{x}$¼ÈÎÞ×î´óÖµ£¬ÓÖÎÞ×îСֵ£¬×ÛÉÏËùÊö£¬aµÄȡֵ·¶Î§ÊÇa£¼0£»
µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯ÊýµÄÐÔÖÊ¡¢Ò»´Îº¯ÊýµÄÐÔÖÊ¡¢¶þ´Îº¯ÊýµÄÐÔÖÊÒÔ¼°¸ùµÄÅбðʽ£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©¸ù¾ÝÒ»´Î£¨¶þ´Î£©º¯ÊýµÄÐÔÖʽâ¾ö×îÖµÎÊÌ⣻£¨2£©ÕÒ³ö¹ØÓÚxµÄ²»µÈʽ£»£¨3£©·Öm£¼2¡¢2¡Üm¡Ü4ºÍm£¾4ÈýÖÖÇé¿ö¿¼ÂÇ£®
| A£® | 2 | B£® | 3 | C£® | 4 | D£® | 5 |
| A£® | ÍíÉÏ7µã20·Ö | B£® | ÍíÉÏ8µã20·Ö | C£® | ÍíÉÏ7µã40·Ö | D£® | ÍíÉÏ8µã40·Ö |
| A£® | -2 | B£® | 2 | C£® | $\frac{1}{2}$ | D£® | -$\frac{1}{2}$ |
| A£® | $\sqrt{{2^2}+{7^2}}$=2+7 | B£® | $\sqrt{9\frac{1}{2}}$=3$\sqrt{\frac{1}{2}}$ | C£® | $\sqrt{6}$¡Â$\sqrt{3}$=$\sqrt{2}$ | D£® | $\frac{{\sqrt{8}+\sqrt{12}}}{{\sqrt{2}}}$=4+6 |