题目内容
20.分析 因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.
解答 解:长方体的展开图如图:![]()
![]()
![]()
(1)展开前面右面由勾股定理得AB2=(30+20)2+102=2600;
(2)展开前面上面由勾股定理得AB2=(10+20)2+302=1800;
(3)展开左面上面由勾股定理得AB2=(10+30)2+202=2000.
∵30$\sqrt{2}$<20$\sqrt{5}$<10$\sqrt{26}$,
∴最短路程长为30$\sqrt{2}$cm.
点评 本题考查的是平面展开-最短路径问题,根据题意画出长方体的侧面展开图,利用勾股定理求解是解答此题的关键.
练习册系列答案
相关题目
11.方程-2x+3=0的解是( )
| A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
15.下列能构成直角三角形的一组数是( )
| A. | 2、3、4 | B. | 6、8、9 | C. | 5、12、13 | D. | 1、1、2 |
5.下列四组线段中,可以构成直角三角形的是( )
| A. | 6,7,8 | B. | 1,$\sqrt{2}$,5 | C. | 6,8,10 | D. | $\sqrt{5}$,2$\sqrt{3}$,$\sqrt{15}$ |
12.下列语句是真命题的是( )
| A. | 同位角相等 | B. | 如果a⊥b,b⊥c,则a⊥c | ||
| C. | 相等的角是对顶角 | D. | 如果a∥b,b∥c,则a∥c |