题目内容
如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为( )
![]()
A.48° B.36° C.30° D.24°
A【考点】线段垂直平分线的性质.
【分析】根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数.
【解答】解:∵BD平分∠ABC,
∴∠DBC=∠ABD=24°,
∵∠A=60°,
∴∠ACB=180°﹣60°﹣24°×2=72°,
∵BC的中垂线交BC于点E,
∴BF=CF,
∴∠FCB=24°,
∴∠ACF=72°﹣24°=48°,
故选:A.
【点评】此题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.
练习册系列答案
相关题目