题目内容

20.如图,O是直线AB上一点,∠COD是直角,OE是∠BOC的平分线.
(1)如图1,若∠AOC=40°,求∠DOE的度数;
(2)在图1中,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);
(3)将图1中的∠COD按顺时针方向旋转至图2所示的位置.探究∠AOC与∠DOE之间的数量关系,写出你的结论,并说明理由;

分析 (1)先根据邻补角定义求出∠BOC,根据角平分线定义求出∠COE,代入∠DOE=∠COD-∠COE求出即可;
(2)先根据邻补角定义求出∠BOC,根据角平分线定义求出∠COE,代入∠DOE=∠COD-∠COE求出即可;
(3)先根据邻补角定义求出∠BOC,根据角平分线定义求出∠COE,代入∠DOE=∠COD-∠COE求出即可.

解答 解:(1)∵O是直线AB上一点(如图1),
∴∠AOC+∠BOC=180°.
∵∠AOC=40°,
∴∠BOC=140°.
∵OE平分∠BOC,
∴∠COE=$\frac{1}{2}$∠BOC=$\frac{1}{2}$×140°=70°.
∵∠DOE=∠COD-∠COE,∠COD=90°,
∴∠DOE=20°;

(2)∠DOE=$\frac{1}{2}$α,
理由是:∵O是直线AB上一点(如图1),
∴∠AOC+∠BOC=180°.
∵∠AOC=α,
∴∠BOC=180°-α.
∵OE平分∠BOC,
∴∠COE=$\frac{1}{2}$∠BOC=$\frac{1}{2}$×(180°-α)=90°-$\frac{1}{2}α$,
∵∠DOE=∠COD-∠COE,∠COD=90°,
∴∠DOE=$\frac{1}{2}$α;


(3)∠DOE=$\frac{1}{2}$∠AOC.
理由如下:
∵O是直线AB上一点(如图2),
∴∠AOC+∠BOC=180°.
∴∠BOC=180°-∠AOC.
∵OE平分∠BOC,
∴∠COE=$\frac{1}{2}$∠BOC=$\frac{1}{2}$(180°-∠AOC),
∵∠DOE=∠COD-∠COE,∠COD=90°,
∴∠DOE=90°-$\frac{1}{2}$(180°-∠AOC)=$\frac{1}{2}$∠AOC,
∴∠DOE=$\frac{1}{2}$∠AOC.

点评 本题考查了角平分线定义,角的有关计算等知识点,能正确求出∠COE的度数是解此题的关键,求解过程类似.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网