ÌâÄ¿ÄÚÈÝ
1£®ÔĶÁÏÂÃæ×ÊÁÏ£º$\frac{1}{1+\sqrt{2}}$=$\frac{1¡Á£¨\sqrt{2}-1£©}{£¨\sqrt{2}+1£©£¨\sqrt{2}-1£©}$=$\sqrt{2}$-1£»
$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{£¨\sqrt{3}+\sqrt{2}£©£¨\sqrt{3}-\sqrt{2}£©}$=$\sqrt{3}$-$\sqrt{2}$£»
$\frac{1}{\sqrt{5}+2}$=$\frac{\sqrt{5}-2}{£¨\sqrt{5}+2£©£¨\sqrt{5}-2£©}$=$\sqrt{5}$-2£®
ÊÔÇ󣺣¨1£©$\frac{1}{\sqrt{7}+\sqrt{6}}$µÄÖµ£»
£¨2£©$\frac{1}{3\sqrt{2}+\sqrt{17}}$µÄÖµ£»
£¨3£©£¨$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+¡+$\frac{1}{\sqrt{2008}+\sqrt{2009}}$+$\frac{1}{\sqrt{2009}+\sqrt{2010}}$£©•£¨1+$\sqrt{2010}$£©£®
·ÖÎö £¨1£©Ôʽ·ÂÕÕÔĶÁ²ÄÁÏÖеķ½·¨Çó³öÖµ¼´¿É£»
£¨2£©Ôʽ·ÂÕÕÔĶÁ²ÄÁÏÖеķ½·¨Çó³öÖµ¼´¿É£»
£¨3£©ÔʽµÚÒ»¸öÀ¨ºÅÖзÂÕÕÔĶÁ²ÄÁÏÖеķ½·¨±äÐΣ¬¼ÆËã¼´¿ÉµÃµ½½á¹û£®
½â´ð ½â£º£¨1£©Ôʽ=$\frac{\sqrt{7}-\sqrt{6}}{£¨\sqrt{7}+\sqrt{6}£©£¨\sqrt{7}-\sqrt{6}£©}$=$\sqrt{7}$-$\sqrt{6}$£»
£¨2£©Ôʽ=$\frac{3\sqrt{2}-\sqrt{17}}{£¨3\sqrt{2}+\sqrt{17}£©£¨3\sqrt{2}-\sqrt{17}£©}$=3$\sqrt{2}$-$\sqrt{17}$£»
£¨3£©Ôʽ=£¨$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+¡+$\sqrt{2009}$-$\sqrt{2008}$+$\sqrt{2010}$-$\sqrt{2009}$£©•£¨1+$\sqrt{2010}$£©
=£¨$\sqrt{2010}$-1£©£¨$\sqrt{2010}$+1£©
=2010-1
=2009£®
µãÆÀ ´ËÌ⿼²éÁË·ÖĸÓÐÀí»¯£¬ÅªÇåÔĶÁ²ÄÁÏÖеķ½·¨ÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
11£®ÔÚ¡÷ABCÖУ¬AB=13£¬BC=10£¬BC±ßÉϵÄÖÐÏßAD=12£¬ÔòAC=£¨¡¡¡¡£©
| A£® | 10 | B£® | 11 | C£® | 12 | D£® | 13 |