题目内容

6.如图,在?ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.
(1)求证:四边形ABCD是菱形;
(2)若∠EAF=60°,CF=2,求AF的长.

分析 (1)方法一:连接AC,利用角平分线判定定理,证明DA=DC即可;方法二:只要证明△AEB≌△AFD.可得AB=AD即可解决问题.
(2)在Rt△ACF,根据AF=CF•tan∠ACF计算即可.

解答 (1)证法一:连接AC,如图.

∵AE⊥BC,AF⊥DC,AE=AF,
∴∠ACF=∠ACE,
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠DAC=∠ACB.
∴∠DAC=∠DCA,
∴DA=DC,
∴四边形ABCD是菱形.
证法二:如图,

∵四边形ABCD是平行四边形,
∴∠B=∠D.
∵AE⊥BC,AF⊥DC,
∴∠AEB=∠AFD=90°,
又∵AE=AF,
∴△AEB≌△AFD.
∴AB=AD,
∴四边形ABCD是菱形.

(2)解:连接AC,如图.

∵AE⊥BC,AF⊥DC,∠EAF=60°,
∴∠ECF=120°,
∵四边形ABVD是菱形,
∴∠ACF=60°,
在Rt△CFA中,AF=CF•tan∠ACF=2$\sqrt{3}$.

点评 本题考查菱形的性质和判定、平行四边形的性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网