题目内容

6.△ABC的三个顶点在⊙O上,AD⊥BC,D为垂足,E是$\widehat{BC}$的中点,求证:∠1=∠2(提示:可以延长AO交⊙O于F,连接BF).

分析 连接OE,利用垂径定理可得OE⊥BC,再利用AD⊥BC,可得OE∥AD,然后即可证明.

解答 证明:连接OE,
∵E是$\widehat{BC}$的中点,
∴弧BE=弧EC,
∴OE⊥BC,
∵AD⊥BC,
∴OE∥AD,
∴∠OEA=∠EAD,
∵OE=OA,
∴∠OAE=∠OEA,
∴∠1=∠2.

点评 此题主要考查学生对三角形内角和定理和圆心角、弧、弦的关系等知识点的理解和掌握,此题难度不大,关键是作好辅助线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网