题目内容

9.如图,某货轮上午8时20分从A处出发,此时观测到海岛B的方位为北偏东60°,该货轮以每小时30海里的速度向东航行到C处,此时观测到海岛B的方位为北偏东30°,继续向东航行到D处,观测到海岛B的方位为北偏西30°.当货轮到达C处时恰好与海岛B相距60海里,求该货轮到到达C,D处的时间.

分析 根据题意,求得已知角的度数,根据特殊角的三角函数值求得AC、BC的值,从而求得CD的值,根据行程问题的求法再求轮船到达C处和D处的时间即可.

解答 解:由己知,得∠BAC=30°,∠ACB=120°,∠BCD=∠BDC=60°
∴∠ABC=∠BAC=30°
∴AC=BC=60(海里)∠CBD=60°
∴t1=60÷30=2(小时)
∴△BCD是等边三角形∴BC=CD=60(海里)
∴t2=60÷30=2(小时),
∴t3=2+2=4(小时).
答:轮船到达C处是上午10时20分,轮船到达D处的时间是下午12时20分.
或轮船到达C处用了2小时,到达D处用了4小时.

点评 此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网