题目内容

15.如图,在平面直角坐标系中,△AOB是等边三角形,且边长为2,则点A的坐标为A(1,$\sqrt{3}$).

分析 过点A作AC⊥OB于点C,根据△AOB是等边三角形,OB=2可得出OC=BC=1,∠OAC=$\frac{1}{2}$∠OAB=30°.在Rt△AOC中,根据∠OAC=30°,OA=2可得出AC及OC的长,进而得出A点坐标.

解答 解:过点A作AC⊥OB于点C,
∵△AOB是等边三角形,OB=2,
∴OC=BC=1,∠OAC=$\frac{1}{2}$∠OAB=30°,
在Rt△AOC中,
∵∠OAC=30°,OA=2,
∴OC=1,AC=OA•cos30°=2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∴A(1,$\sqrt{3}$).
故答案为A(1,$\sqrt{3}$).

点评 本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网