ÌâÄ¿ÄÚÈÝ
7£®Èçͼ¢Ù£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Õý·½ÐÎOABCµÄ¶¥µãA¡¢BµÄ×ø±ê·Ö±ðΪ£¨2£¬2£©¡¢£¨4£¬0£©£¬µãD¡¢E·Ö±ðÊDZßOA¡¢ABµÄÖе㣬µãFÊÇÏß¶ÎDEµÄÖе㣬¹ýµãDµÄÅ×ÎïÏßy=x2+2mx+n£¨m¡¢nΪ³£Êý£©µÄ¶¥µãΪP£®£¨1£©µãDµÄ×ø±êΪ£¨1£¬1£©£®Óú¬mµÄ´úÊýʽ±íʾnΪn=-2m£®
£¨2£©µ±Å×ÎïÏßy=x2+2mx+n¹ýµãBʱ£¬Èçͼ¢Ú£®
¢ÙÇó¸ÃÅ×ÎïÏßËù¶ÔÓ¦µÄº¯Êý±í´ïʽ£»
¢ÚÈôµãMÔÚ¸ÃÅ×ÎïÏßÉÏ£¬ÇÒλÓÚxÖáÏ·½£¬µãNÔÚÕý·½ÐÎOABCµÄ±ßÉÏ£¬µ±ÒÔDEºÍMNΪ¶Ô±ßµÄËıßÐÎÊÇÆ½ÐÐËıßÐÎʱ£¬ÇóµãNµÄ×ø±ê£»
£¨3£©µ±µãPÔÚÕý·½ÐÎOABCµÄ±ßÉÏ»òÄÚ²¿£¬ÇÒÅ×ÎïÏßy=x2+2mx+nÓëÏß¶ÎEFûÓй«¹²µãʱ£¬Ö±½Óд³ömµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©¸ù¾ÝÖеã×ø±ê¹«Ê½¼´¿ÉÇó³öµãD×ø±ê£¬°ÑµãD×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽ¼´¿É½â¾öÎÊÌ⣮
£¨2£©¢Ù°ÑµãB×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽ¼´¿É£®
¢Ú¹Û²ìͼÏó¿ÉÖªµãNÔÚBC±ßÉÏ£¬Ö±ÏßBCµÄ½âÎöʽΪy=x-4£¬ÉèM£¨m£¬m2-$\frac{16}{3}$m+$\frac{16}{3}$£©£¬ÔòN£¨m+2£¬m2-$\frac{16}{3}$m+$\frac{16}{3}$£©£¬°ÑµãN×ø±ê´úÈëÖ±ÏßBCµÄ½âÎöʽ¼´¿É£®
£¨3£©·Ö¶Ô³ÆÖáÔÚµãF×ó±ß»òµãEÓұߣ¬·Ö±ðÁгö²»µÈʽ×飬½â²»µÈʽ×é¼´¿É½â¾öÎÊÌ⣮
½â´ð ½â£º£¨1£©¡ßA£¨2£¬2£©£¬DO=DA£¬
¡àD£¨1£¬1£©£¬
°ÑD£¨1£¬1£©´úÈëy=x2+2mx+nµÃ1=1+2m+n£¬
¡àn=-2m£®
¹Ê´ð°¸Îª£¨1£¬1£©£¬n=-2m£®
£¨2£©¢Ù¡ßy=x2+2mx-2m¾¹ýµãB£¨4£¬0£©£¬
¡à0=16+8m-2m£¬
¡àm=-$\frac{8}{3}$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=x2-$\frac{16}{3}$x+$\frac{16}{3}$£®
¢Ú¹Û²ìͼÏó¿ÉÖªµãNÔÚBC±ßÉÏ£¬Ö±ÏßBCµÄ½âÎöʽΪy=x-4£¬
ÉèM£¨m£¬m2-$\frac{16}{3}$m+$\frac{16}{3}$£©£¬ÔòN£¨m+2£¬m2-$\frac{16}{3}$m+$\frac{16}{3}$£©£¬
°ÑµãN×ø±ê´úÈëÖ±ÏßBCµÄ½âÎöʽµÃµ½£¬m2-$\frac{16}{3}$m+$\frac{16}{3}$=m+2-4£¬
ÕûÀíµÃµ½3m2-19m+22=0£¬
½âµÃm=$\frac{19-\sqrt{97}}{6}$»ò$\frac{19+\sqrt{97}}{6}$£¨ÉáÆú£©
¡àN£¨$\frac{31-\sqrt{97}}{6}$£¬$\frac{7-\sqrt{97}}{6}$£©£®
£¨3£©ÓÉÌâÒâ$\left\{\begin{array}{l}{-\frac{2m}{2}£¼\frac{3}{2}}\\{-m¡Ý2m+{m}^{2}}\\{-m¡Ý0}\end{array}\right.$»ò$\left\{\begin{array}{l}{-\frac{2m}{2}£¾2}\\{4+m¡Ý2m+{m}^{2}}\\{4+m¡Ý0}\end{array}\right.$£¬
½âµÃ-$\frac{3}{2}$¡Üm¡Ü0»ò$\frac{-1-\sqrt{17}}{2}$¡Üm£¼-2£®
µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯Êý¡¢´ý¶¨ÏµÊý·¨¡¢²»µÈʽ×éµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÓ¦Óôý¶¨ÏµÊý·¨È·¶¨º¯Êý½âÎöʽ£¬Ñ§»áÓÃת»¯µÄ˼Ïë˼¿¼ÎÊÌ⣬°ÑÎÊÌâת»¯Îª²»µÈʽ×é½â¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮
| A£® | a+b£¼0 | B£® | ab£¼0 | C£® | |b|=b | D£® | |a|£¼|b| |