题目内容

13.一次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论;
①2a+b>0;②abc<0;③b2-4ac>0;④a+b+c<0,
其中正确的个数是(  )
A.1B.2C.3D.4

分析 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.

解答 解:①由图象可知:对称轴x=-$\frac{b}{2a}$>1且a<0,所以2a+b<0,正确;
②由抛物线的开口方向向下可推出a<0,
因为对称轴在y轴右侧,对称轴为x=-$\frac{b}{2a}$>0,
而a<0,所以b>0,
由抛物线与y轴的交点在y轴的负半轴上,可知c<0,故abc>0,错误;
③由图象可知抛物线与x轴有两个交点,所以b2-4ac>0,正确;
④由图象可知:当x=1时,y>0
∴a+b+c>0,错误;
综上可得:①③正确.
故选B.

点评 此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网