题目内容
2.二元一次方程组$\left\{\begin{array}{l}{x+2y=2}\\{2x+y=-2}\end{array}\right.$的解是( )| A. | $\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=-1}\\{y=0}\end{array}\right.$ |
分析 ①×2-②得出3y=6,求出y=2,把y的值代入①求出x即可.
解答 解:$\left\{\begin{array}{l}{x+2y=2①}\\{2x+y=-2②}\end{array}\right.$
①×2-②得:3y=6,
解得:y=2,
把y=2代入①得:x+4=2,
解得:x=-2,
即方程组$\left\{\begin{array}{l}{x+2y=2}\\{2x=y=-2}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$,
故选B.
点评 本题考查了解二元一次方程组的应用,能把二元一次方程组转化成一元一次方程是解此题的关键.
练习册系列答案
相关题目
14.
如图,在⊙O上有顶点C和动点P,位于直径AB的两侧,过点C作CP的垂线与PB的延长线交于点Q.已知⊙O的直径为10,tan∠ABC=$\frac{4}{3}$,则CQ最大值为( )
| A. | 5 | B. | $\frac{15}{2}$ | C. | $\frac{25}{4}$ | D. | $\frac{20}{3}$ |