题目内容

20.如图,在直角坐标系xOy中,反比例函数图象与直线y=x-2相交于横坐标为3的点A.
(1)求反比例函数的解析式;
(2)如果点B在直线y=x-2上,点C在反比例函数图象上,BC∥x轴,BC=4,且BC在点A上方,求点B的坐标.

分析 (1)设反比例函数的解析式为y=$\frac{k}{x}$,把点A的横坐标代入直线解析式y=x-2,可求得点A的纵坐标,把点A的横纵坐标代入y=$\frac{k}{x}$,即可求得所求的反比例函数解析式;
(2)设点C($\frac{3}{m}$,m),则点B(m+2,m),根据BC=4列出方程m+2-$\frac{3}{m}$=4,解方程即可.

解答 解:(1)设反比例函数的解析式为y=$\frac{k}{x}$.
∵横坐标为3的点A在直线y=x-2上,
∴y=3-2=1,
∴点A的坐标为(3,1),
∴1=$\frac{k}{3}$,∴k=3,
∴反比例函数的解析式为y=$\frac{3}{x}$;

(2)设点C($\frac{3}{m}$,m),则点B(m+2,m),
∵BC=4,
∴m+2-$\frac{3}{m}$=4,
∴m2+2m-3=4m,
∴m2-2m-3=0,
解得m1=3,m2=-1.
m1=3,m2=-1都是方程的解,但m=-1不符合题意,
∴点B的坐标为(5,3).

点评 本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数的解析式,一次函数、反比例函数图象上点的坐标特征,难度适中.求出反比例函数的解析式是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网