题目内容

13.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥GF交AB于点E,连接EG.
(1)求证:BG=CF;
(2)若∠BAC=90°,请你判断BE,CF与EF三条线段的数量关系,并证明.

分析 (1)由BG∥AC得出∠DBG=∠DCF,从而根据ASA证得△BGD≌△CFD,即可证得结论.
(2)根据△BGD≌△CFD得出GD=FD,BG=CF,然后根据线段的垂直平分线的性质求得EG=EF,根据平行线的性质证得∠EBG=90°,最后根据勾股定理即可求得BE2+BG2=EG2,通过等量代换即可得到BE、CF、EF之间存在的等量关系.

解答 解:(1)∵BG∥AC,
∴∠DBG=∠DCF,
∵D是BC的中点,
∴BD=CD,
在△BGD和△CFD中,
$\left\{\begin{array}{l}{∠DBG=∠DCF}\\{BD=CD}\\{∠BDG=∠CDF}\end{array}\right.$,
∴△BGD≌△CFD(ASA),
∴BG=CF.

(2)BE2+CF2=EF2
理由:∵△BGD≌△CFD,
∴GD=FD,BG=CF,
又∵DE⊥FG,
∴EG=EF(垂直平分线上的点到线段两端点的距离相等),
∵∠A=90°,AC∥BG,
∴∠EBG=90°,
∴在△EBG中,BE2+BG2=EG2
即BE2+CF2=EF2

点评 本题考查了平行线的性质,三角形全等的判定和性质,线段的垂直平分线的性质以及勾股定理的应用,熟练掌握性质定理是解题的关键.

练习册系列答案
相关题目
8.我们来定义下面两种数:
①平方和数:若一个三位数或者三位以上的整数分成左、中、右三个数后满足:中间数=(左边数)2+(右边数)2,我们就称该整数为平方和数;例如:对于整数251.它中间的数字是5,左边数是2,右边数是1.∵22+12=5,∴251是一个平方和数.又例如:对于整数3254,它的中间数是25,左边数是3,右边数是4,∵32+42=25∴2,34是一个平方和数.当然152和4253这两个数也是平方和数;
②双倍积数:若一个三位数或者三位以上的整数分拆成左、中、右三个数后满足:中间数=2×左边数×右边数,我们就称该整数为双倍积数;例如:对于整数163,它的中间数是6,左边数是1,右边数是3,∵2×1×3=6,∴163是一个双倍积数,又例如:对于整数3305,它的中间数是30,左边数是3,右边数是5,∵2×35=30,∴3305是一个双倍积数,当然361和5303这两个数也是双倍积数;
注意:在下面的问题中,我们统一用字母a表示一个整数分出来的左边数,用字母b表示一个整数分出来的右边数,请根据上述定义完成下面问题:
(1)如果一个三位整数为平方和数,且十位数为9,则该三位数为390;如果一个三位整数为双倍积数,且十位数字为4,则该三位数为241或142;
(2)如果一个整数既为平方和数,又是双倍积数.则a,b应该满足什么数量关系;说明理由;
(3)$\overline{a625b}$为一个平方和数,$\overline{a600b}$为一个双倍积数,求a2-b2

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网