如图,将∠AOB放在边长为1的小正方形组成的网格中,则tan∠AOB=

. 【解析】试题分析:过点A作AD⊥OB垂足为D,如图,在直角△ABD中,AD=1,OD=2,则tan∠AOB==.故答案为: .

小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行 米.

80 【解析】 试题分析:先分析出小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),再根据路程、时间、速度的关系即可求得. 【解析】 通过读图可知:小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分), 所以小明回家的速度是每分钟步行800÷10=80(米). 故答案为:80.

根据图中尺规作图的痕迹,先判断得出结论:__________,并说明理由. 

OM平分∠BOA 【解析】根据全等三角形的判定及性质即可得出结论. 【解析】 如图所示,连接CM,DM, 由作图的痕迹可知,OC=OD,CM=DM. 又因为OM=OM, 所以△COM≌△DOM. 所以∠COM=∠DOM. 所以OM平分∠BOA. 故答案为:OM平分∠BOA.

一个直角三角形有两条边长为3,4,则较小的锐角约为(  )

A. 37° B. 41° C. 37°或41° D. 以上答案均不对

C 【解析】试题解析:①若3、4是直角边, ∵两直角边为3,4, ∴斜边长==5, ∴较小的锐角所对的直角边为3,则其正弦值为; ②若斜边长为4,则较小边=≈2.65, ∴较小边所对锐角正弦值约==0.6625, 利用计算器求得角约为37°或41°. 故选C.

如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为( )

A. 15° B. 17.5° C. 20° D. 22.5°

A 【解析】因为AB=AC,∠ABC=75°,所以∠A=30°. 因为∠ABC与∠ACE的平分线相交于点D,所以∠ABD=∠EBD,∠ACD=∠ECD. 设ABD=∠EBD=x,∠ACD=∠ECD=y,则 2y=2x+30°①, y=x+∠D ② 联立①②得,∠D=15°. 故选A.

如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值( )

A. B. C. D.

D 【解析】试题分析:如图,延长AD,过点C作CE⊥AD,垂足为E, ∵tanB=,即, ∴设AD=5x,则AB=3x, ∵∠CDE=∠BDA,∠CED=∠BAD, ∴△CDE∽△BDA, ∴, ∴CE=x,DE= , ∴AE= , ∴tan∠CAD=. 故选D.

如图所示,已知B、E分别是线段AC、DF的中点,AC=DF,BF交CD于点H,AE交CD于点G,CH=HG=DG,BH=GE.

(1)填空:因为B、E分别是线段AC、DF的中点,所以CB=________AC,DE=________DF.因为AC=DF,所以CB=________.在△CBH和△DEG中,因为CB=________,CH=________,BH=________EG,所以________≌________(SSS).

(2)除了(1)中的全等三角形外,请你再写出另外一对全等三角形,并说明理由.

(1) , ,DE,DE,DG,△CBH,△DEG. (2)证明见解析. 【解析】试题分析:(1)因为B是AC的中点, 同理因为AC=DF,由上知根据上面求得: 即可得△CBH≌△DEG.两个三角形对应的三边相等,则两个三角形全等,所以找出三角形对应的三边 (2)根据题中条件分析,再用SAS来证明即可 试题解析:(1)因为B是AC的中点, 同理 因为AC=DF,由上知根据上...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网