题目内容

如图,学校的保管室里,有一架5米长的梯子斜靠在墙上,此时梯子与地面所成的角为,如果梯子的底端固定不动,顶端靠在对面墙上,此时梯子与地面所成的角为,求此保管室的宽度的长.

【解析】由于两边的墙都和地面垂直,所以构成了两个直角三角形. ∵cos45°==,∴;而cos60°==,∴BO=. ∴AB=AO+BO==.
练习册系列答案
相关题目

在Rt△ABC中,∠C=90°,CD是斜边AB上的高,如果CD=3,BD=2.求cos∠A的值.

【解析】分析:根据题意画出图形,进而利用锐角三角函数关系得出cosA=cos∠BCD进而求出即可. 本题解析: 如图所示: ∵∠ACB=90°,∴∠B+∠A=90°, ∵CD⊥AB,∴∠CDA=90°,∴∠B+∠BCD=90°,∴∠BCD=∠A, ∵CD=3,BD=2,∴BC= ∴cosA=cos∠BCD= 故答案为:

如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于_____.

5 【解析】试题解析: 作EF⊥BC于F, ∵BE平分∠ABC,EF⊥BC,ED⊥AB, ∴EF=DE=2, ∴△BCE的面积 故答案为:5.

用直尺和圆规作一个角的平分线如图所示,说明∠AOC=∠BOC的依据是( ).

A. SSS B. ASA C. AAS D. 角平分线上的点到角两边距离相等

A 【解析】试题分析:连接NC,MC,根据SSS证△ONC≌△OMC,即可推出答案. 连接NC,MC,在△ONC和△OMC中, ∴△ONC≌△OMC(SSS), ∴∠AOC=∠BOC

在△ABC中,∠C-90°,若tanB=2,a=1,则b=________.

2 【解析】试题解析:在Rt△ABC中, ∵∠C=90°, ∴AB为斜边. ∴b=AC•tanB =a•tanB =2. 故答案为:2.

如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.

求证:AD=AE.

证明见解析 【解析】试题分析:利用等腰三角形的性质得到∠B=∠C,然后证明△ABD≌△ACE即可证得结论. 【解答】证明:∵AB=AC, ∴∠B=∠C, 在△ABD与△ACE中, ∵, ∴△ABD≌△ACE(SAS), ∴AD=AE.

如图,矩形ABCD是供一机动车停放的车位示意图,已知BC=2m,CD=5.4m,∠DCF=30°.请你计算车位所占的宽度EF约为多少米?(≈1.73,结果保留一位小数)

4.4米 【解析】试题分析:分别在Rt△BCF和Rt△AEF中求得DF和DE的长后,相加即可得到EF的长. 试题解析: 在Rt△DCF中, ∵CD=5.4m,∠DCF=30°, ∴sin∠DCF=, ∴DF=2.7m, ∵∠CDF+∠DCF=90°∠ADE+∠CDF=90°, ∴∠ADE=∠DCF=30°, ∵AD=BC=2, ∴cos∠...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网