题目内容

1.如图,某公路稽查站设立了如下测速方法:先在公路旁选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21m,∠ACD=60°,∠BCD=30°.某辆汽车从A到B用时为2s,本路段对汽车限速为40km/h,这辆汽车是否超速?说明理由.($\sqrt{3}$≈1.732)

分析 分别在Rt△ADC和Rt△BCD中,求得AB的长,由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.

解答 解:超速.
理由:由題意得,
在Rt△ADC和Rt△BCD中,∠ACD=60°,∠BCD=30°,
∠CAD=∠ACB=30°,
故AB=BC,
在Rt△BDC中,cos30°=$\frac{CD}{BC}$=$\frac{21}{BC}$=$\frac{\sqrt{3}}{2}$,
则AB=BC=14$\sqrt{3}$≈24.2(米),
∵汽车从A到B用时2秒,
∴速度为24.2÷2=12.1(米/秒),
∵12.1×3600=43560(米/时),
∴该车速度为43.56千米/小时,
∵大于40千米/小时,
∴此校车在AB路段超速.

点评 此题考查了解直角三角形的应用问题.此题难度适中,解题的关键是把实际问题转化为数学问题求解,注意数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网