ÌâÄ¿ÄÚÈÝ
3£®£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ¼°Æä¶Ô³ÆÖᣮ
£¨2£©Á¬½ÓAC¡¢BC£¬ÊÔÅжϡ÷AOCÓë¡÷COBÊÇ·ñÏàËÆ£¿²¢ËµÃ÷ÀíÓÉ£®
£¨3£©MΪÅ×ÎïÏßÉÏBCÖ®¼äµÄÒ»µã£¬NΪÏß¶ÎBCÉϵÄÒ»µã£¬ÈôMN¡ÎyÖᣬÇóMNµÄ×î´óÖµ£»
£¨4£©ÔÚÅ×ÎïÏߵĶԳÆÖáÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹¡÷ACQΪµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³ö·ûºÏÌõ¼þµÄQµã×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©°ÑµãBµÄ×ø±ê´úÈëÅ×ÎïÏß½âÎöʽÇó³öbµÄÖµ£¬¼´¿ÉµÃµ½Å×ÎïÏß½âÎöʽ£¬ÔÙ¸ù¾Ý¶Ô³ÆÖá·½³ÌÁÐʽ¼ÆËã¼´¿ÉµÃ½â£»
£¨2£©Áîy=0£¬½â·½³ÌÇó³öµãAµÄ×ø±ê£¬Áîx=0Çó³öyµÄÖµµÃµ½µãCµÄ×ø±ê£¬ÔÙÇó³öOA¡¢OB¡¢OC£¬È»ºó¸ù¾Ý¶ÔÓ¦±ß³É±ÈÀý£¬¼Ð½ÇÏàµÈµÄÁ½¸öÈý½ÇÐÎÏàËÆÖ¤Ã÷£»
£¨3£©ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+b£¬ÀûÓôý¶¨ÏµÊý·¨Çó³ö½âÎöʽ£¬ÔÙ±íʾ³öMN£¬È»ºó¸ù¾Ý¶þ´Îº¯ÊýµÄ×îÖµÎÊÌâ½â´ð£»
£¨4£©ÀûÓù´¹É¶¨ÀíÁÐʽÇó³öAC£¬¹ýµãC×÷CD¡Í¶Ô³ÆÖáÓÚD£¬È»ºó·Ö¢ÙAC=CQʱ£¬ÀûÓù´¹É¶¨ÀíÁÐʽÇó³öDQ£¬·ÖµãQÔÚµãDµÄÉÏ·½ºÍÏ·½Á½ÖÖÇé¿öÇó³öµãQµ½xÖáµÄ¾àÀ룬ÔÙд³öµãµÄ×ø±ê¼´¿É£»¢ÚµãQΪ¶Ô³ÆÖáÓëxÖáµÄ½»µãʱ£¬AQ=CQ£¬ÔÙд³öµãQµÄ×ø±ê¼´¿É£®
½â´ð ½â£º£¨1£©¡ßµãB£¨8£¬0£©ÔÚÅ×ÎïÏßy=-$\frac{1}{4}$x2+bx+4ÉÏ£¬
¡à-$\frac{1}{4}$¡Á64+8b+4=0£¬
½âµÃ£ºb=$\frac{3}{2}$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=-$\frac{1}{4}$x2+$\frac{3}{2}$x+4£¬
¶Ô³ÆÖáΪֱÏßx=-$\frac{\frac{3}{2}}{2¡Á£¨-\frac{1}{4}£©}$=3£»
£¨2£©¡÷AOC¡×¡÷COB£®
ÀíÓÉÈçÏ£ºÁîy=0£¬Ôò-$\frac{1}{4}$x2+$\frac{3}{2}$x+4=0£¬
¼´x2-6x-16=0£¬
½âµÃ£ºx1=-2£¬x2=8£¬
¡àµãAµÄ×ø±êΪ£¨-2£¬0£©£¬
Áîx=0£¬Ôòy=4£¬
¡àµãCµÄ×ø±êΪ£¨0£¬4£©£¬
¡àOA=2£¬OB=8£¬OC=4£¬
¡ß$\frac{OC}{OA}$=$\frac{OB}{OC}$=2£¬¡ÏAOC=¡ÏCOB=90¡ã£¬
¡à¡÷AOC¡×¡÷COB£»
£¨3£©ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+b£¬
Ôò$\left\{\begin{array}{l}{8k+b=0}\\{b=4}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=4}\end{array}\right.$£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=-$\frac{1}{2}$x+4£¬
¡ßMN¡ÎyÖᣬ
¡àMN=-$\frac{1}{4}$x2+$\frac{3}{2}$x+4-£¨-$\frac{1}{2}$x+4£©£¬
=-$\frac{1}{4}$x2+$\frac{3}{2}$x+4+$\frac{1}{2}$x-4£¬
=-$\frac{1}{4}$x2+2x£¬
=-$\frac{1}{4}$£¨x-4£©2+4£¬![]()
¡àµ±x=4ʱ£¬MNµÄÖµ×î´ó£¬×î´óֵΪ4£»
£¨4£©Óɹ´¹É¶¨ÀíµÃ£¬AC=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$£¬
¹ýµãC×÷CD¡Í¶Ô³ÆÖáÓÚD£¬ÔòCD=3£¬
¢ÙAC=CQʱ£¬DQ=$\sqrt{C{Q}^{2}-C{D}^{2}}$=$\sqrt{£¨2\sqrt{5}£©^{2}-{3}^{2}}$=$\sqrt{11}$£¬
µãQÔÚµãDµÄÉÏ·½Ê±£¬µãQµ½xÖáµÄ¾àÀëΪ4+$\sqrt{11}$£¬
´ËʱµãQ1£¨3£¬4+$\sqrt{11}$£©£¬
µãQÔÚµãDµÄÏ·½Ê±£¬µãQµ½xÖáµÄ¾àÀëΪ4-$\sqrt{11}$£¬
´ËʱµãQ2£¨3£¬4-$\sqrt{11}$£©£¬
¢ÚµãQΪ¶Ô³ÆÖáÓëxÖáµÄ½»µãʱ£¬AQ=5£¬
CQ=$\sqrt{{3}^{2}+{4}^{2}}$=5£¬
¡àAQ=CQ£¬
´Ëʱ£¬µãQ3£¨3£¬0£©£¬
¢Ûµ±AC=AQʱ£¬¡ßAC=2$\sqrt{5}$£¬µãAµ½¶Ô³ÆÖáµÄ¾àÀëΪ5£¬2$\sqrt{5}$£¼5£¬
¡àÕâÖÖÇéÐβ»´æÔÚ£®
×ÛÉÏËùÊö£¬µãQµÄ×ø±êΪ£¨3£¬4+$\sqrt{11}$£©»ò£¨3£¬4-$\sqrt{11}$£©»ò£¨3£¬0£©Ê±£¬¡÷ACQΪµÈÑüÈý½ÇÐΣ®
µãÆÀ ±¾ÌâÊǶþ´Îº¯Êý×ÛºÏÌâÐÍ£¬Ö÷ÒªÀûÓÃÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ£¬´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ£¬ÏàËÆÈý½ÇÐεÄÅж¨£¬¶þ´Îº¯ÊýµÄ×îÖµÎÊÌ⣬¹´¹É¶¨ÀíµÄÓ¦Ó㬵ÈÑüÈý½ÇÐεÄÐÔÖÊ£¬ÄѵãÔÚÓÚ£¨4£©Òª·ÖÇé¿öÌÖÂÛ£®
| A£® | $\sqrt{16}$=¡À4 | B£® | 3-2=-$\frac{1}{9}$ | C£® | £¨$\sqrt{3}-\sqrt{2}$£©2=1 | D£® | £¨$\sqrt{2}$-1£©0=1 |