题目内容
1.如图1,在△ACB和△AED中,AC=BC,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=6$\sqrt{2}$,BE=8,求EF的长;
(2)求证:CE=$\sqrt{2}$EF;
(3)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立?并说明理由.
分析 (1)由AE=DE,∠AED=90°,AD=6$\sqrt{2}$,可求得AE=DE=3,在Rt△BDE中,由DE=6,BE=8,可知BD=10,又F是线段BD的中点,所以EF=$\frac{1}{2}$BD=5;
(2)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF=$\sqrt{2}$EF;
(3)思路同(2).连接CF,延长EF交CB于点G,先证△EFC是等腰三角形,要证明EF=FG,需要证明△DEF和△FGB全等.由全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此得出结论.
解答 解:(1)∵∠AED=90°,AE=DE,AD=6$\sqrt{2}$,
∴AE=DE=6,
在Rt△BDE中,
∵DE=6,BE=8,
∴BD=10,![]()
又∵F是线段BD的中点,
∴EF=$\frac{1}{2}$BD=5;
(2)如图1,连接CF,线段CE与FE之间的数量关系是CE=$\sqrt{2}$FE;
∵∠BED=∠AED=∠ACB=90°,
∵点F是BD的中点,
∴CF=EF=FB=FD,
∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,
∴∠DFE=2∠ABD,
同理∠CFD=2∠CBD,
∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,
即∠CFE=90°,
∴CE=$\sqrt{2}$EF;
(3)(2)中的结论仍然成立.
如图2,连接CF,延长EF交CB于点G,
∵∠ACB=∠AED=90°,
∴DE∥BC,
∴∠EDF=∠GBF,
在△EDF和△GBF中,
$\left\{\begin{array}{l}{∠EDF=∠GBF}\\{DF=BF}\\{∠EFD=∠GFB}\end{array}\right.$,
∴△EDF≌△GBF(ASA),
∴EF=GF,BG=DE=AE,
∵AC=BC,
∴CE=CG,
∴∠EFC=90°,CF=EF,
∴△CEF为等腰直角三角形,
∴∠CEF=45°,
∴CE=$\sqrt{2}$FE;
∴CE=$\sqrt{2}$EF.
点评 本题主要考查了全等三角形的判定与性质,关键是通过全等三角形来得出线段的相等,如果没有全等三角形的要根据已知条件通过辅助线来构建.
| A. | 60° | B. | 90° | C. | 120° | D. | 135° |
| A. | 相等、平分且垂直 | B. | 相等且平分 | C. | 相等且垂直 | D. | 垂直且平分 |
| A. | y1<y2 | B. | y1=y2 | C. | y1>y2 | D. | 不能确定 |