题目内容

2.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.求证:AC平分∠DAB.

分析 连结OC,如图,根据切线的性质得OC⊥AD,则可得到OC∥AD,根据平行线的性质得∠1=∠2,加上∠1=∠3,则∠2=∠3,于是可判断AC平分∠DAB.

解答 证明:连结OC,如图,
∵CD为⊙O的切线,
∴OC⊥AD,
∵AD⊥CD,
∴OC∥AD,
∴∠1=∠2,
∵OC=OA,
∴∠1=∠3,
∴∠2=∠3,
∴AC平分∠DAB.

点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网