ÌâÄ¿ÄÚÈÝ
2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¹ýÔµãO¼°µãA£¨0£¬2£©¡¢C£¨6£¬0£©×÷¾ØÐÎOABC£¬¡ÏAOCµÄƽ·ÖÏß½»ABÓÚµãD£®µãP´ÓµãO³ö·¢£¬ÒÔÿÃë$\sqrt{2}$¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØÉäÏßOD·½ÏòÒÆ¶¯£»Í¬Ê±µãQ´ÓµãO³ö·¢£¬ÒÔÿÃë2¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØxÖáÕý·½ÏòÒÆ¶¯£®ÉèÒÆ¶¯Ê±¼äΪtÃ룮£¨1£©µ±µãPÒÆ¶¯µ½µãDʱ£¬t=2Ã룻
£¨2£©Á¬½ÓµãA£¬C£¬ÇóÖ±ÏßACµÄ½âÎöʽ£»
£¨3£©ÈôµãMÊÇÖ±ÏßACÉϵÚÒ»ÏóÏÞÄÚÒ»µã£¬ÊÇ·ñ´æÔÚijһʱ¿Ì£¬Ê¹µÃËıßÐÎOPMQΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³ötµÄÖµ¼°µãMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾Ý¾ØÐÎÒÔ¼°½Çƽ·ÖÏßµÄÐÔÖʿɵóö¡÷OADΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬ÔÙ¸ù¾ÝµãAµÄ×ø±ê½áºÏµÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖʼ´¿ÉµÃ³öODµÄ³¤¶È£¬´Ó¶ø¿ÉµÃ³ötÖµ£»
£¨2£©ÉèÖ±ÏßAC½âÎöʽΪy=kx+b£¬¸ù¾ÝµãA¡¢CµÄ×ø±êÀûÓÚ´ý¶¨ÏµÊý·¨¼´¿ÉÇó³öÖ±ÏßACµÄ½âÎöʽ£»
£¨3£©¼ÙÉè´æÔÚ£¬ÕÒ³öµãP¡¢O¡¢QÈýµãµÄ×ø±ê£¬¸ù¾ÝƽÐÐËıßÐεÄÐÔÖÊ--¶Ô½ÇÏß»¥ÏàÆ½·Ö£¬·Ö±ðÒÔOP¡¢OQ¡¢PQΪ¶Ô½ÇÏßÇó³öµãMµÄ×ø±ê£¬ÔÙ¸ù¾ÝµãMÊÇÖ±ÏßACÉϵÚÒ»ÏóÏÞÄÚÒ»µã£¬¼´¿ÉÇó³ötÖµÒÔ¼°µãMµÄ×ø±ê£®
½â´ð ½â£º£¨1£©¡ßËıßÐÎOABCΪ¾ØÐΣ¬ÇÒ¡ÏAOCµÄƽ·ÖÏß½»ABÓÚµãD£¬
¡à¡÷OADΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡ßµãA£¨0£¬2£©£¬
¡àOA=2£¬OD=2$\sqrt{2}$£¬
µãPÒÆ¶¯µ½µãDʱ£¬t=2$\sqrt{2}$¡Â$\sqrt{2}$=2£¨Ã룩£®
¹Ê´ð°¸Îª£º2£®
£¨2£©ÉèÖ±ÏßAC½âÎöʽΪy=kx+b£¬
½«µãA£¨0£¬2£©¡¢C£¨6£¬0£©´úÈëy=kx+bÖУ¬
µÃ£º$\left\{\begin{array}{l}{b=2}\\{6k+b=0}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{k=-\frac{1}{3}}\\{b=2}\end{array}\right.$£¬
¡àÖ±ÏßAC½âÎöʽΪy=-$\frac{1}{3}$x+2£®
£¨3£©¼ÙÉè´æÔÚ£¬¹ýµãP×÷PE¡ÍxÖáÓÚµãE£¬ÈçͼËùʾ£®![]()
ÓÉ£¨1£©¿ÉÖª¡÷POEΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àµãP£¨t£¬t£©£®
O£¨0£¬0£©£¬Q£¨2t£¬0£©£®
ËıßÐÎOPMQΪƽÐÐËıßÐηÖÈýÖÖÇé¿ö£º
¢ÙÒÔOPΪ¶Ô½ÇÏßʱ£¬µãM£¨0+t-2t£¬0+t-0£©£¬¼´£¨-t£¬t£©£¬
¡ßµãMÔÚµÚÒ»ÏóÏÞ£¬
¡à´ËÇé¿ö²»·ûºÏÒªÇó£»
¢ÚÒÔOQΪ¶Ô½ÇÏßʱ£¬µãM£¨0+2t-t£¬0+0-t£©£¬¼´£¨t£¬-t£©£¬
¡ßµãMÔÚµÚÒ»ÏóÏÞ£¬
¡à´ËÇé¿ö²»·ûºÏÒªÇó£»
¢ÛÒÔPQΪ¶Ô½ÇÏßʱ£¬µãM£¨t+2t-0£¬t+0-0£©£¬¼´£¨3t£¬t£©£¬
¡ßµãMÔÚµÚÒ»ÏóÏÞÄÚ£¬ÇÒµãMÔÚÖ±ÏßACÉÏ£¬
¡àt=-$\frac{1}{3}$¡Á3t+2£¬½âµÃ£ºt=1£¬
´ËʱµãMµÄ×ø±êΪ£¨3£¬1£©£®
×ÛÉÏ¿ÉÖª£ºÈôµãMÊÇÖ±ÏßACÉϵÚÒ»ÏóÏÞÄÚÒ»µã£¬´æÔÚijһʱ¿Ì£¬Ê¹µÃËıßÐÎOPMQΪƽÐÐËıßÐΣ¬´Ëʱt=1£¬µãMµÄ×ø±êΪ£¨3£¬1£©£®
µãÆÀ ±¾Ì⿼²éÁ˾ØÐεÄÐÔÖÊ¡¢µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊ¡¢´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽÒÔ¼°Æ½ÐÐËıßÐεÄÐÔÖÊ£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©Çó³öÏß¶ÎODµÄ³¤£»£¨2£©ÀûÓôý¶¨ÏµÊý·¨Çó³öº¯Êý½âÎöʽ£»£¨3£©·ÖÈýÖÖÇé¿öÌÖÂÛ£®±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬¸ù¾ÝƽÐÐËıßÐεÄÐÔÖÊ--¶Ô½ÇÏß»¥ÏàÆ½·Ö£¬ÓÉÆ½ÐÐËıßÐεÄÈý¸ö¶¥µã×ø±êÇó³öµÚËĸö¶¥µãµÄ×ø±êÊǹؼü£®
| A£® | 5¡¢3¡¢9 | B£® | 5¡¢3¡¢8 | C£® | 5¡¢2¡¢7 | D£® | 5¡¢3¡¢6 |
| A£® | 4 | B£® | $\frac{1}{4}$ | C£® | -$\frac{1}{4}$ | D£® | -4 |
| A£® | 2¸ö | B£® | 3¸ö | C£® | 4¸ö | D£® | 5¸ö |
| A£® | x¡Ù0 | B£® | x¡Ü-3 | C£® | x¡Ý-3 | D£® | x¡Ù-3 |
| A£® | x2 | B£® | £¨x+6£©2 | C£® | £¨x+2£©£¨x-6£© | D£® | £¨x+2£©2 |
| A£® | £¨$\sqrt{4}$£©2=4 | B£® | $\sqrt{£¨-4£©^{2}}$=-4 | C£® | $\sqrt{£¨-4£©¡Á£¨-9£©}$=$\sqrt{-4}$¡Á$\sqrt{-9}$ | D£® | $\sqrt{7}$-$\sqrt{5}$=$\sqrt{2}$ |