题目内容

1.二次函数y=5(x-1)2的图象上有三点A($\sqrt{2}$,y1),B(2,y2),C(-$\sqrt{5}$,y3),则y1、y2、y3的大小关系是(  )
A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1

分析 由函数解析式得到抛物线对称轴x=1,抛物线开口方向向上,则A、B、C的横坐标离对称轴越近,则纵坐标越小,由此判断y1、y2、y3的大小.

解答 解:在二次函数y=3(x-1)2+2,对称轴x=1,
在图象上的三点A($\sqrt{2}$,y1),B(2,y2),C(-$\sqrt{5}$,y3),|$\sqrt{2}$-1|<|2-1|<|-$\sqrt{5}$-1|,
则y1、y2、y3的大小关系为y1<y2<y3
故选:D.

点评 本题考查了二次函数图象上点的坐标特征,由点的横坐标到对称轴的距离判断点的纵坐标的大小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网