题目内容

8.如图,在办公楼AB和实验楼CD之间有一旗杆EF,从办公楼AB顶部A点处经过旗杆顶部E点恰好看到实验楼CD的底部D点,且俯角为45°,从实验楼CD顶部C点处经过旗杆顶部E点恰好看到办公楼AB的G点,BG=1米,且俯角为30°,已知旗杆EF=9米,求办公楼AB的高度.(结果精确到1米,参考数据:$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73)

分析 根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt△GEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△AGP中,继而可求出AB的长度.

解答 解:由题意可知∠BAD=∠ADB=45°,
∴FD=EF=9米,AB=BD
在Rt△GEH中,∵tan∠EGH=$\frac{EH}{GH}$=$\frac{8}{GH}$,即$\frac{8}{GH}=\frac{\sqrt{3}}{3}$,
∴BF=8$\sqrt{3}$,
∴PG=BD=BF+FD=8$\sqrt{3}$+9,
AB=(8$\sqrt{3}$+9)米≈23米,
答:办公楼AB的高度约为23米.

点评 本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网