题目内容

7.求证:两条平行直线被第三条直线所截,一对同旁内角的平分线互相垂直
解:如图,已知直线AB∥CD,直线OP,MN分别平分∠BOM,∠OMD,直线OP,MN交于G点.
求证:MN⊥OP
证明:∵AB∥CD(已知)
∴∠BOM+∠OMD=180°(两直线平行,同旁内角互补).
∵MN,OP分别平分∠OMD,∠BOM(已知),
∴2∠POM+2∠NMO=180°(角平分线的定义)
∴∠POM+∠PMO=90°(等式的性质)
∴∠MGO=90°(三角形的内角和定理)
∴MN⊥OP.

分析 两条平行直线被第三条直线所截,一对同旁内角的和是180°,然后根据角平分线的性质求出这对同旁内角和的一半是90°,即可求证一对同旁内角的平分线互相垂直.

解答 证明:∵AB∥CD(已知)
∴∠BOM+∠OMD=180°( 两直线平行,同旁内角互补).
∵MN,OP分别平分∠OMD,∠BOM(已知),
∴2∠POM+2∠NMO=180°(角平分线的定义)
∴∠POM+∠PMO=90°(等式的性质)
∴∠MGO=90°(三角形的内角和定理)
∴MN⊥OP.
故答案为:180°,两直线平行,同旁内角互补,180°,∠POM+∠PMO,∠MGO=90°

点评 本题主要考查了平行线的性质以及三角形内角和定理的运用,利用平行线的性质以及角平分线的性质,求证两直线相交所得的夹角是90°是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网