题目内容
2.在“石头、剪刀、布”的游戏中,两人同时出“石头”的概率是( )| A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{9}$ |
分析 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人同时出“石头”的情况,再利用概率公式求解即可求得答案.
解答 解:画树状图得:![]()
∵共有9种等可能的结果,两人同时出“石头”的只有1种情况,
∴两人同时出“石头”的概率是:$\frac{1}{9}$.
故选D.
点评 此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关题目
13.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数$\overline{x}$与方差s2:
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲.
| 甲 | 乙 | 丙 | 丁 | |
| 平均数$\overline{x}$(cm) | 561 | 560 | 561 | 560 |
| 方差s2(cm2) | 3.5 | 3.5 | 15.5 | 16.5 |
17.如果把分式$\frac{2x}{3x-2y}$中的x和y都扩大2倍,那么分式的值( )
| A. | 扩大3倍 | B. | 扩大9倍 | C. | 缩小3倍 | D. | 不变 |
14.某风景区门票价格如下表所示,宝应青年旅行社组织了甲、乙两个旅游团队,计划在春节期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人.设甲团队人数为x人.
(1)用含x的代数式表示出两团队门票款之和;
①当70≤x≤100时,两团队门票款之和为9600-10x;
②当x>100时,两团队门票款之和为9600-20x;
(2)如果甲团队人数不超过100人,那么甲、乙两团队联合购票比分别购票最多可节约多少钱?
(3)春节之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团对春节之后去游玩,最多可节约3400元,求a的值.
| 人数 | 不超过50人 | 超过50人但不超过100人 | 超过100人 |
| 票价的价格 | 80元/人 | 70元/人 | 60元/人 |
①当70≤x≤100时,两团队门票款之和为9600-10x;
②当x>100时,两团队门票款之和为9600-20x;
(2)如果甲团队人数不超过100人,那么甲、乙两团队联合购票比分别购票最多可节约多少钱?
(3)春节之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团对春节之后去游玩,最多可节约3400元,求a的值.
11.下列属于最简二次根式的是( )
| A. | $\sqrt{21}$ | B. | $\sqrt{0.1}$ | C. | $\sqrt{8}$ | D. | $\sqrt{\frac{1}{3}}$ |