ÌâÄ¿ÄÚÈÝ
8£®ÀûÓÃÎÒÃÇѧ¹ýµÄ֪ʶ£¬¿ÉÒÔµ¼³öÏÂÃæÕâ¸öÐÎʽÓÅÃÀµÄµÈʽ£ºa2+b2+c2-ab-bc-ac=$\frac{1}{2}$[£¨a-b£©2+£¨b-c£©2+£¨c-a£©2]£¬¸ÃµÈʽ´Ó×óµ½ÓҵıäÐΣ¬²»½ö±£³ÖÁ˽ṹµÄ¶Ô³ÆÐÔ£¬»¹ÌåÏÖÁËÊýѧµÄºÍг¡¢¼ò½àÃÀ£®£¨1£©ÇëÄã¼ìÑéÕâ¸öµÈʽµÄÕýÈ·ÐÔ£»
£¨2£©Èôa=2012£¬b=2013£¬c=2014£¬ÄãÄܺܿìÇó³öa2+b2+c2-ab-bc-acµÄÖµÂð£¿
·ÖÎö £¨1£©ÒÑÖªµÈʽÓÒ±ßÀûÓÃÍêȫƽ·½¹«Ê½»¯¼ò£¬ÕûÀí¼´¿É×÷³öÑéÖ¤£»
£¨2£©°Ña£¬b£¬cµÄÖµ´úÈëÒÑÖªµÈʽÓұߣ¬Çó³öÖµ¼´ÎªËùÇóʽ×ÓµÄÖµ£®
½â´ð £¨1£©Ö¤Ã÷£ºÓÒ±ß=$\frac{1}{2}$[£¨a-b£©2+£¨b-c£©2+£¨c-a£©2]=$\frac{1}{2}$£¨a2-2ab+b2+b2-2bc+c2+c2-2ac+a2£©=$\frac{1}{2}$£¨2a2+2b2+2c2-2ab-2bc-2ac£©=a2+b2+c2-ab-bc-ac=×ó±ß£»
£¨2£©½â£ºµ±a=2012£¬b=2013£¬c=2014ʱ£¬Ôʽ=$\frac{1}{2}$[£¨a-b£©2+£¨b-c£©2+£¨c-a£©2]=$\frac{1}{2}$¡Á£¨1+1+4£©=3£®
µãÆÀ ´ËÌ⿼²éÁËÍêȫƽ·½¹«Ê½£¬ÊìÁ·ÕÆÎÕÍêȫƽ·½¹«Ê½ÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿