题目内容

如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为( )

A. 4cm B. 3cm C. 2cm D. 1cm

C 【解析】连接AM、AN、过A作AD⊥BC于D,如图所示: ∵在△ABC中,AB=AC,∠A=120°,BC=6cm, ∴∠B=∠C=30°,BD=CD=3cm, ∴AB= cm=AC, ∵AB的垂直平分线EM, ∴BE= AB= cm 同理CF=cm, ∴BM==2cm, 同理CN=2cm, ∴MN=BC-BM-CN=2cm, 故选C.
练习册系列答案
相关题目

如图,BC=4cm,AB=3cm,AF=12cm,AC⊥AF,正方形CDEF的面积是169cm2,试判断△ABC的形状?

△ABC是直角三角形. 【解析】分析:首先根据正方形的面积求出FC的长,再在Rt△ACF中利用勾股定理求出AC的长,然后根据勾股定理逆定理证明∠B=90°即可. 本题解析: ∵正方形CDEF的面积是169 cm2, ∴FC=13 cm 在Rt△ACF中,由勾股定理得, AC2=CF2﹣AF2=132﹣122=25, 在△ABC中,因为AB2+BC2=32+...

一个口袋里有5个红球,3个黄球,2个绿球,任意摸一个,摸(  )的可能性最小.

A. 红球 B. 黄球 C. 绿球 D. 以上都不对

C 【解析】由题意知这个口袋中装有5个红球,3个黄球,2个绿球,共有5+3+2=10个球,摸到红球的概率是,摸到黄球的概率是,摸到绿球的概率是,因此,摸到绿球的可能性最小. 故选C.

如图,剪两张等宽对边平行的纸条,随意交叉叠放在一起,转动其中的一张,重合的部分构成了一个四边形,这个四边形是________.

菱形 【解析】试题分析:首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断. 【解析】 过点D分别作AB,BC边上的高为AE,AF, ∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形, ∴AB∥CD,AD∥BC, ∴四边形ABCD是平行四边形(对边相互平行的四边...

如图,点D在BC上,DE⊥AB,DF⊥AC,垂足分别为E、F,DE=DF.求证:AD垂直平分EF.

见解析 【解析】试题分析:根据直角三角形的判定定理证明Rt△AED≌Rt△AFD,得到AE=AF,根据线段垂直平分线的判定定理证明结论. 试题解析: 在Rt△AED和Rt△AFD中, ∴Rt△AED≌Rt△AFD(HL), ∴AE=AF, 又∵DE=DF, ∴AD是EF的垂直平分线,即AD垂直平分EF.

中心对称图形和旋转对称图形的区别是什么呢?

见解析 【解析】【试题分析】注意从定义上区别. 【试题解析】中心对称是把一个图形绕其几何中心旋转180度后能够和原来的图形互相重合的图形叫中心对称图形.这个点就是它的对称中心.例如菱形;旋转对称不是旋转一定的角度,而是旋转非周角的角度。就是说不能是旋转360度的整数倍后与自身重合了。例如电扇的叶片转动120°与自身重合,当然菱形也是旋转对称,但并不是所有的旋转对称都是中心对称. ...

关于点O成中心对称的两个四边形ABCD和DEFG,AD、BE、CF、DG都过______

点O 【解析】对应点的连线经过对称中心. 故答案:点O.

分解因式: =____________________.

xm+1(x+1)(x-1) 【解析】= xm+1(x2-1)= xm+1(x+1)(x-1), 故答案为:xm+1(x+1)(x-1).

四边形ABCD各顶点的坐标分别为A(2,4)、B(0,2)、C(2,1)、D(3,2),将四边形向左平移4个单位长度,再向上平移3个单位长度,得到四边形A′B′C′D′.

(1)四边形A′B′C′D′与四边形ABCD对应点的横坐标有什么关系?纵坐标呢?分别写出A′B′C′D′的坐标;

(2)如果将四边形A′B′C′D′看成是由四边形ABCD经过一次平移得到的,请指出这一平移的方向和距离.

见解析. 【解析】试题分析: (1)根据图形,分别写出四边形A′B′C′D′与四边形ABCD各顶点坐标,对比发现:对应点的横坐标分别减了4,纵坐标分别加了3,A′(-2,7),B′(-4,5),C′(-2,4),D′(-1,5), (2)连接AA′,根据勾股定理算出:AA′==5.如果将四边形A′B′C′D′看成是由四边形ABCD经过一次平移得到的,那么平移的方向是由A到A′的方向,平...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网