题目内容

11.如图,在正方形OABC中,点A的坐标是(-3,1),点B的纵坐标是4,则B,C两点的坐标分别是(  )
A.(-2,4),(1,3)B.(-2,4),(2,3)C.(-3,4),(1,4)D.(-3,4),(1,3)

分析 作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(-3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE-BF=3-1=2,得出B(-2,4)即可.

解答 解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,
则∠AEO=∠ODC=∠BFA=90°,
∴∠OAE+∠AOE=90°,
∵四边形OABC是正方形,
∴OA=CO=BA,∠AOC=90°,
∴∠AOE+∠COD=90°,
∴∠OAE=∠COD,
在△AOE和△OCD中,$\left\{\begin{array}{l}{∠AEO=∠ODC}&{\;}\\{∠OAE=∠COD}&{\;}\\{OA=CO}&{\;}\end{array}\right.$,
∴△AOE≌△OCD(AAS),
∴AE=OD,OE=CD,
∵点A的坐标是(-3,1),
∴OE=3,AE=1,
∴OD=1,CD=3,
∴C(1,3),
同理:△AOE≌△BAF,
∴AE=BF=1,OE-BF=3-1=2,
∴B(-2,4);
故选:A.

点评 本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网