题目内容

12.解下列方程组.
(1)$\left\{\begin{array}{l}{x+2y=4}\\{2x-3y=1}\end{array}\right.$                      
(2)$\left\{\begin{array}{l}{x+4y=14}\\{\frac{x-3}{4}-\frac{y-3}{3}=\frac{1}{12}}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{x+2y=4①}\\{2x-3y=1②}\end{array}\right.$,
①×2-②得:7y=7,即y=1,
把y=1代入①得:x=2,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{x+4y=14①}\\{3x-4y=-2②}\end{array}\right.$,
①+②得:4x=12,即x=3,
把x=3代入①得:y=$\frac{11}{4}$,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=\frac{11}{4}}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网