题目内容

3.点D、E、F分别在△ABC的BC,CA,AB边上,∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF,BE、CF交于点M,CF、AD交于点N,且满足∠BMF=2∠CND,那么∠BAC等于$\frac{180}{7}$(度).

分析 由∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF易得各角与∠ABC、∠ACB、∠BAC之间的关系,由三角形外角等于不相邻的两个内角和表示出∠BMF与∠CND,再利用∠BMF=2∠CND可得出∠ABC+∠ACB=6∠BAC,再结合三角形内角和为180°可得出结论.

解答 解:∵∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF,
∴∠CAD=$\frac{3}{4}$BAC,∠BAD=$\frac{1}{4}$∠BAC,∠ABE=$\frac{3}{4}$∠ABC,∠EBC=$\frac{1}{4}$∠ABC,∠BCF=$\frac{3}{4}$∠ACB,∠ACF=$\frac{1}{4}$∠ACB.
∠BMF=∠EBC+∠BCF=$\frac{1}{4}$∠ABC+$\frac{3}{4}$∠ACB;
∠CND=∠CAD+∠ACF=$\frac{3}{4}$∠BAC+$\frac{1}{4}$∠ACB;
∵∠BMF=2∠CND,即$\frac{1}{4}$∠ABC+$\frac{3}{4}$∠ACB=2×($\frac{3}{4}$∠BAC+$\frac{1}{4}$∠ACB),
∴∠ABC+∠ACB=6∠BAC,
又∵∠ABC+∠ACB+∠BAC=180°,
∴∠BAC=$\frac{180°}{7}$.
故答案为:$\frac{180}{7}$.

点评 本题考查了三角形的内角和定理以及三角形的外角定理.解题的关键是由∠BMF=2∠CND找出∠ABC+∠ACB=6∠BAC.本题属于中档题,难度不大,但在角的变化上稍显繁琐,一不注意就易失分,做形如此类题型时,牢牢把握等量关系是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网