题目内容

13.阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”:如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:
(1)如图1,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;  
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.

分析 (1)根据题意证明∠ADE=∠BEC和∠A=∠B,得到△ADE∽△BEC;
(2)根据题意画图即可;
(3)根据相似三角形的性质和折叠的性质解答即可.

解答 解:(1)∵∠A=∠DEC=45°
∴∠ADE+∠AED=135°,∠BEC+∠AED=135°,
∴∠ADE=∠BEC,
又∵∠A=∠B,
∴△ADE∽△BEC,
∴点E是四边形ABCD的边AB上的相似点;
(2)如图中所示的点E和点F为AB上的强相似点;
(3)∵点E是四边形ABCM的边AB上的一个强相似点,
∴△AEM∽△BCE∽△ECM,
∴∠BCE=∠ECM=∠AEM,
由折叠可知:△ECM≌△DCM,
∴∠ECM=∠DCM,CE=CD,
∴∠BCE=$\frac{1}{3}$∠BCD=30°,CE=AB,
在Rt△BCE中,cos∠BCE=$\frac{BC}{EC}$,
∴$\frac{BC}{EC}$=$\frac{\sqrt{3}}{2}$,
∴$\frac{BC}{AB}$=$\frac{\sqrt{3}}{2}$.

点评 本题考查的是相似三角形的综合应用,理解新定义、掌握相似三角形的性质定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网