题目内容

1.已知,如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.
(1)求证:四边形ADCF是平行四边形;
(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.

分析 (1)根据平行四边形的判定定理得出即可;
(2)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论,根据等腰三角形三线合一的性质知AD⊥BC;而AF与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.

解答 (1)证明:∵AF∥CD,AF=CD,
∴四边形ADCF是平行四边形;

(2)解:当AB=AC时,四边形ADCF为矩形,
理由是:∵E是AD的中点,
∴AE=DE.
∵AF∥BC,
∴∠FAE=∠BDE,∠AFE=∠DBE.
在△AFE和△DBE中,
$\left\{\begin{array}{l}{∠FAE=∠BDE}\\{∠AFE=∠DBE}\\{AE=DE}\end{array}\right.$,
∴△AFE≌△DBE(AAS).
∴AF=BD.
∵AF=DC,
∴BD=DC.
∵AB=AC,
∴AD⊥BC即∠ADC=90°.
∴平行四边形ADCF是矩形,
即当AB=AC时,四边形ADCF为矩形.

点评 此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用,熟记特殊平行四边形的判定方法是解题的关键

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网