题目内容

9.x+3y=7的正整数解$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,$\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$.

分析 先求出y的值(把x当作已知数),求出x的范围,再范围内取符合条件的数即可.

解答 解:x+3y=7,
y=$\frac{7-x}{3}$,
即x>0,$\frac{7-x}{3}$>0,
解得:0<x<7,
∵x、y为正整数,
∴符合的解为:$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,$\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,$\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$.

点评 本题考查了解二元一次方程,二次一次方程的解的应用,解此题的关键是求出x的范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网