题目内容
12.下列图形中,轴对称图形的个数是( )| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.
解答 解:第一个,是轴对称图形,符合题意;
第二个,不是轴对称图形,不合题意;
第三个,是轴对称图形,符合题意;
第四个,是轴对称图形,符合题意.
故选:C.
点评 此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.
练习册系列答案
相关题目
20.某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表,去年销售总额为80000元,今年A型智能手表的售价每只比去年降了600元,若售出的数量与去年相同,销售总额将比去年减少25%.
(1)请问今年A型智能手表每只售价多少元?
(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价与销售价格如右表,若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?
| A型智能手表 | B型智能手表 | |
| 进价 | 1300元/只 | 1500元/只 |
| 售价 | 今年的售价 | 2300元/只 |
(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价与销售价格如右表,若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?
7.据襄阳新闻报道2016年3月至2016年10月,襄阳闸口二路“大虾一条街”共销售大虾6000余吨.2017年潜江养虾专业户张小花抓住商机,将自己养殖的大虾销往襄阳.计算了养殖成本以及运费等诸多因素,他发现大虾的成本价为20元/公斤.经过市场调查,一周的销售量y公斤与销售单价x(x≥30)元/公斤的关系如下表:
(1)直接写出y与x的函数关系式;
(2)若张小花一周的销售利润为W元,请求出W与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?
(3)随着赚的钱越来越多,张小花决定回馈社会将一周的销售利润全部捐给襄阳市福利院.若一周张小花的总成本不超过4000元,请求出张小花最大捐款数额是多少元?
| 销售单价x元/公斤 | … | 30 | 35 | 40 | 45 | … |
| 销售量y公斤 | … | 500 | 450 | 400 | 350 | … |
(2)若张小花一周的销售利润为W元,请求出W与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?
(3)随着赚的钱越来越多,张小花决定回馈社会将一周的销售利润全部捐给襄阳市福利院.若一周张小花的总成本不超过4000元,请求出张小花最大捐款数额是多少元?
17.
如图,点P是函数y=$\frac{1}{x}$(x>0)的图象上的一点,⊙P的半径为$\sqrt{2}$,当⊙P与直线y=x有公共点时,点P的横坐标x的取值范围是( )
| A. | 1≤x≤$\sqrt{2}$ | B. | $\sqrt{2}-1≤x≤\sqrt{2}$ | C. | $\sqrt{2}-1≤x≤1$ | D. | $\sqrt{2}-1≤x≤\sqrt{2}+1$ |
4.
如图,点A(1,2)在反比例函数y=$\frac{k}{x}$(x>0)上,B为反比例函数图象上一点,不与A重合,当以OB为直径的圆经过A点,点B的坐标为( )
| A. | (2,1) | B. | (3,$\frac{2}{3}$) | C. | (4,0.5) | D. | (5,0.4) |
1.
如图所示,直线l1∥l2,三角尺的一个顶点在l2上,若∠1=70°,则∠2=( )
| A. | 70° | B. | 60° | C. | 40° | D. | 30° |