ÌâÄ¿ÄÚÈÝ
19£®ÒÑÖªÅ×ÎïÏßy=ax2+bx-4ÓëxÖá½»ÓÚA£¬BÁ½µã£¬£¨µãBÔÚµãAµÄ×ó²à£©ÇÒA£¬BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨-2£¬0£©¡¢£¨8£¬0£©£¬ÓëyÖá½»ÓÚµãC£¬Á¬½ÓBC£¬ÒÔBCΪһ±ß£¬µãOΪ¶Ô³ÆÖÐÐÄ×÷ÁâÐÎBDEC£¬µãPÊÇxÖáÉϵÄÒ»¸ö¶¯µã£¬ÉèµãPµÄ×ø±êΪ£¨m£¬0£©£¬¹ýµãP×÷xÖáµÄ´¹ÏßL½»Å×ÎïÏßÓÚµãQ£¬½»BDÓÚµãM£®£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µ±µãPÔÚÏß¶ÎOBÉÏÔ˶¯Ê±£¬ÊÔ̽¾¿mΪºÎֵʱ£¬ËıßÐÎCQMDÊÇÆ½ÐÐËıßÐΣ¿
£¨3£©ÔÚ£¨2£©µÄ½áÂÛÏ£¬ÊÔÎÊÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãN£¨²»Í¬ÓÚµãQ£©£¬Ê¹Èý½ÇÐÎBCNµÄÃæ»ýµÈÓÚÈý½ÇÐÎBCQµÄÃæ»ý£¿Èô´æÔÚ£¬ÇëÇó³öµãNµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾Ý´ý¶¨ÏµÊý·¨¼´¿ÉÇóµÃ£®
£¨2£©ÓÉÁâÐεĶԳÆÐÔ¿ÉÖª£¬µãDµÄ×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨¿ÉÇóÖ±ÏßBDµÄ½âÎöʽ£¬¸ù¾ÝƽÐÐËıßÐεÄÐÔÖʿɵùØÓÚmµÄ·½³Ì£¬ÇóµÃmµÄÖµ£»ÔÙ¸ù¾ÝƽÐÐËıßÐεÄÅж¨¿ÉµÃËıßÐÎCQMDµÄÐÎ×´£»
£¨3£©ÒªÊ¹Èý½ÇÐÎBCNµÄÃæ»ýµÈÓÚÈý½ÇÐÎBCQµÄÃæ»ý£¬¿ÉÅжÏËıßÐÎCQBNÊÇÆ½ÐÐËıßÐΣ¬½âµÃ´ËʱµãNµÄ×ø±ê¼´¿É£®
½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=ax2+bx-4ÓëxÖá½»ÓÚA£¨-2£¬0£©£¬B£¨8£¬0£©Á½µã£¬
¡à$\left\{\begin{array}{l}{0=4a-2b-4}\\{0=64a+8b-4}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=\frac{1}{4}}\\{b=-\frac{3}{2}}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪ£ºy=$\frac{1}{4}$x2-$\frac{3}{2}$x-4£»
£¨2£©¡ßC£¨0£¬-4£©
¡àÓÉÁâÐεĶԳÆÐÔ¿ÉÖª£¬µãDµÄ×ø±êΪ£¨0£¬4£©£®
ÉèÖ±ÏßBDµÄ½âÎöʽΪy=kx+b£¬Ôò$\left\{\begin{array}{l}{b=4}\\{8k+b=0}\end{array}\right.$£¬
½âµÃk=-$\frac{1}{2}$£¬b=4£®
¡àÖ±ÏßBDµÄ½âÎöʽΪy=-$\frac{1}{2}$x+4£®
¡ßl¡ÍxÖᣬ
¡àµãMµÄ×ø±êΪ£¨m£¬-$\frac{1}{2}$m+4£©£¬µãQµÄ×ø±êΪ£¨m£¬$\frac{1}{4}$m2-$\frac{3}{2}$m-4£©£®
Èçͼ£¬µ±MQ=DCʱ£¬ËıßÐÎCQMDÊÇÆ½ÐÐËıßÐΣ¬![]()
¡à£¨-$\frac{1}{2}$m+4£©-£¨ $\frac{1}{4}$m2-$\frac{3}{2}$m-4£©=4-£¨-4£©£®
»¯¼òµÃ£ºm2-4m=0£¬
½âµÃm1=0£¨²»ºÏÌâÒâÉáÈ¥£©£¬m2=4£®
¡àµ±m=4ʱ£¬ËıßÐÎCQMDÊÇÆ½ÐÐËıßÐΣ»
£¨3£©ÒªÊ¹Èý½ÇÐÎBCNµÄÃæ»ýµÈÓÚÈý½ÇÐÎBCQµÄÃæ»ý£¬
Nµãµ½BCµÄ¾àÀëÓëQµ½BCµÄ¾àÀëÏàµÈ£»ËùÒÔ¹ýM»òQµãµÄбÂÊΪ$\frac{1}{2}$µÄ Ö±ÏßÓëÅ×ÎïÏߵĽ»µã¼´ÎªËùÇó
M£¨4£¬2£©£¬Q£¨4£¬-6£©
ÉèÖ±Ïßl£ºy=$\frac{1}{2}$x+b
¢Ùµ±Ö±Ïßl¹ýQµãʱ£¬
¿ÉÇól£ºy=$\frac{1}{2}$x-8
ÁªÁ¢Å×ÎïÏß·½³Ì£¬$\frac{1}{4}$x2-$\frac{3}{2}$x-4=$\frac{1}{2}$x-8£»½âµÃx1=x2=4£¨ÓëQÖØºÏ£¬ÉáÈ¥£©
¢Úµ±Ö±Ïß¹ýMµãʱ£¬¿ÉÇó£¬
l£ºy=$\frac{1}{2}x$£¬
ÁªÁ¢Å×ÎïÏß·½³Ì£¬$\frac{1}{4}$x2-$\frac{3}{2}$x-4=$\frac{1}{2}$x£»½âµÃx1=4+$4\sqrt{2}$£¬x2=4-$4\sqrt{2}$£¬´úÈëÖ±Ïß·½³Ì£¬ÇóµÃ
N1£¨4+4$\sqrt{2}$£¬2+2$\sqrt{2}$£©£¬N2£¨4-4$\sqrt{2}$£¬2-2$\sqrt{2}$£©£¬
¹Ê·ûºÏÌõ¼þµÄNµÄ×ø±êΪN1£¨4+4$\sqrt{2}$£¬2+2$\sqrt{2}$£©£¬N2£¨4-4$\sqrt{2}$£¬2-2$\sqrt{2}$£©£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÐÔ£¬Éæ¼°µÄ֪ʶµãÓУº×ø±êÖáÉϵãµÄÌØµã£¬ÁâÐεĶԳÆÐÔ£¬´ý¶¨ÏµÊý·¨ÇóÖ±ÏߵĽâÎöʽ£¬Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖÊ£¬·½³Ì˼ÏëºÍ·ÖÀà˼ÏëµÄÔËÓã¬×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨µÄÄѶȣ®
| A£® | Ò»¶¨ÓÐÁ½¸öÏàµÈµÄʵÊý¸ù | B£® | Ò»¶¨ÓÐʵÊý¸ù | ||
| C£® | Ò»¶¨ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù | D£® | Ò»¶¨Ã»ÓÐʵÊý¸ù |
| A£® | $\sqrt{£¨-2£©^{2}}$=-2 | B£® | £¨-$\sqrt{3}$£©2=9 | C£® | $\root{3}{-9}$=-3 | D£® | ¡À$\sqrt{9}$=¡À3 |
| A£® | $\left\{\begin{array}{l}{x-1£¾0}\\{x+2¡Ü0}\end{array}\right.$ | B£® | $\left\{\begin{array}{l}{x+1£¾0}\\{x-2¡Ü0}\end{array}\right.$ | C£® | $\left\{\begin{array}{l}{x+1¡Ý0}\\{x-2£¼0}\end{array}\right.$ | D£® | $\left\{\begin{array}{l}{x-1¡Ü0}\\{x+2£¼0}\end{array}\right.$ |