题目内容
14.已知矩形ABCD中,AB=3cm,AD=4cm,以A为圆心,4cm为半径作⊙A,则( )| A. | B在⊙A内,C在⊙A外 | B. | D在⊙A内,C在⊙A外 | C. | B在⊙A内,D在⊙A外 | D. | B在⊙A上,C在⊙A外 |
分析 根据勾股定理,可得AC的长,根据点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.
解答 解:由勾股定理,得AC=5,.
AB<4<AC,
B在⊙A内,C在⊙A外,
故选:A.
点评 本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.
练习册系列答案
相关题目
5.你认为tan15°的值可能是( )
| A. | $\frac{\sqrt{3}}{6}$ | B. | 2$+\sqrt{3}$ | C. | 2$-\sqrt{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
9.在△ABC和△DEF中,给出下列四组条件:
①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;
③∠B=∠E,BC=EF,AC=DF;④∠A=∠D,∠B=∠E,∠C=∠F.
其中,能使△ABC≌△DEF的条件共有( )
①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;
③∠B=∠E,BC=EF,AC=DF;④∠A=∠D,∠B=∠E,∠C=∠F.
其中,能使△ABC≌△DEF的条件共有( )
| A. | 1组 | B. | 2组 | C. | 3组 | D. | 4组 |
4.为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10立方米的,按每立方米m元水费收费;用水超过10立方米的,超过部分双倍收费.某职工某月缴水费16m元,则该职工这个月实际用水为( )
| A. | 13立方米 | B. | 14立方米 | C. | 18立方米 | D. | 26立方米 |