ÌâÄ¿ÄÚÈÝ
7£®£¨1£©µ±µãMÂäÔÚABÉÏʱ£¬ÇóxµÄÖµ£®
£¨2£©µ±µãQÔÚ±ßCBÉÏÔ˶¯Ê±£¬ÇóyÓëxµÄº¯Êý¹ØÏµÊ½
£¨3£©Ö±½Óд³öÔÚP¡¢QÁ½µãÕû¸öÔ˶¯¹ý³ÌÖУ¬µ±?CPMQÓë¡÷ABCÖØµþ²¿·ÖͼÐβ»ÊÇËıßÐÎʱ£¬xµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©Ö»ÒªÖ¤Ã÷ËıßÐÎCPMQÊǾØÐΣ¬¡÷MQBÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬Áгö·½³Ì¼´¿É½â¾öÎÊÌ⣮
£¨2£©·ÖÁ½ÖÖÇéÐÎÌÖÂÛ¼´¿É¢ÙÈçͼ2ÖУ¬¢Ùµ±0£¼t¡Ü$\frac{4}{3}$ʱ£¬Öصþ²¿·ÖÊÇËıßÐÎCPMQ£®¢Ú¢ÚÈçͼ3ÖУ¬$\frac{4}{3}$£¼t¡Ü2ʱ£¬Öصþ²¿·ÖÊÇÎå±ßÐÎCPEFQ£®·Ö±ð¼ÆËã¼´¿É£®
£¨3£©¸ù¾Ýͼ4Óëͼ5£¬½áºÏ£¨2£©ÖÐͼÐΣ¬¼´¿ÉÅжϣ®
½â´ð ½â£º£¨1£©Èçͼ1ÖУ¬![]()
¡ß¡ÏC=90¡ã¡¢AC=BC=4£¬ËıßÐÎCPMQÊÇÆ½ÐÐËıßÐΣ¬
¡àËıßÐÎCPMQÊǾØÐΣ¬¡ÏA=¡ÏB=45¡ã£¬
¡àAB¡ÎMQ£¬
¡à¡ÏMQB=¡ÏC=90¡ã£¬
¡à¡ÏQMB=¡ÏB=45¡ã£¬
¡àPC=MQ=BQ£¬
¡à2t+t=4£¬
¡àt=$\frac{4}{3}$£®
£¨2£©Èçͼ2ÖУ¬¢Ùµ±0£¼t¡Ü$\frac{4}{3}$ʱ£¬Öصþ²¿·ÖÊÇËıßÐÎCPMQ£®![]()
y=t•2t=2t2£¬
¢ÚÈçͼ3ÖУ¬$\frac{4}{3}$£¼t¡Ü2ʱ£¬Öصþ²¿·ÖÊÇÎå±ßÐÎCPEFQ£®![]()
y=SËıßÐÎCPMQ-S¡÷EFM=2t2-$\frac{1}{2}$£¨3t-4£©2=-$\frac{5}{2}$t2+12t-8£¬
×ÛÉÏËùÊöy=$\left\{\begin{array}{l}{2{t}^{2}}&{£¨0£¼t¡Ü\frac{4}{3}£©}\\{-\frac{5}{2}{t}^{2}+12t-8}&{£¨\frac{4}{3}£¼t¡Ü2£©}\end{array}\right.$£®
£¨3£©Èçͼ4ÖУ¬µ±QÓëBÖØºÏʱ£¬Öصþ²¿·ÖÊÇËıßÐΣ¬![]()
Èçͼ5ÖУ¬µ±µãPÓëAÖØºÏʱ£¬Öصþ²¿·ÖÊÇÈý½ÇÐΣ®![]()
¡àÔÚP¡¢QÁ½µãÕû¸öÔ˶¯¹ý³ÌÖУ¬µ±?CPMQÓë¡÷ABCÖØµþ²¿·ÖͼÐβ»ÊÇËıßÐÎʱ£¬xµÄȡֵ·¶Î§Îª$\frac{4}{3}$£¼t£¼2»òt=4£®
µãÆÀ ±¾Ì⿼²éËıßÐÎ×ÛºÏÌ⡢ƽÐÐËıßÐεÄÐÔÖÊ¡¢¾ØÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»á·ÖÀàÌÖÂÛ£¬ÐèÒªÕýÈ·»³öͼÐΣ¬ÊôÓÚÖп¼³£¿¼ÌâÐÍ£®
| A£® | 22¡ã | B£® | 32¡ã | C£® | 136¡ã | D£® | 68¡ã |